optimizer.h 8.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <map>
Y
Yan Chunwei 已提交
17
#include <memory>
18
#include <set>
Y
Yan Chunwei 已提交
19 20 21 22
#include <string>
#include <vector>
#include "lite/core/mir/generate_program_pass.h"
#include "lite/core/mir/pass_manager.h"
23
#include "lite/core/mir/pass_utils.h"
Y
Yan Chunwei 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include "lite/core/mir/ssa_graph.h"
#include "lite/core/mir/static_kernel_pick_pass.h"
#include "lite/core/mir/type_target_cast_pass.h"
#include "lite/core/program.h"
#include "lite/core/types.h"
#include "lite/model_parser/model_parser.h"

namespace paddle {
namespace lite {

/*
 * lite::Optimizer optimize a program. It utilize the mir passes to analysis the
 * program and export an optimized program.
 */
class Optimizer {
 public:
  void Run(Program&& program,
           const std::vector<Place>& valid_places,
           core::KernelPickFactor kernel_pick_factor,
           const std::vector<std::string>& passes = {}) {
    program_ = &program;
    valid_places_ = valid_places;
    CHECK(!valid_places.empty()) << "At least one valid_place should be set";
    CHECK(!graph_) << "duplicate optimize found";
48

Y
Yan Chunwei 已提交
49 50 51 52 53 54 55
    graph_.reset(new mir::SSAGraph);
    graph_->Build(program, valid_places);
    graph_->SetValidPlaces(valid_places);

    SpecifyKernelPickTactic(kernel_pick_factor);
    InitTargetTypeTransformPass();

56
    if (passes.empty() || passes.size() == 1) {
57
      std::vector<std::string> passes_local{
J
juncaipeng 已提交
58 59 60 61 62
          {"lite_quant_dequant_fuse_pass",         //
           "weight_quantization_preprocess_pass",  //
           "lite_conv_elementwise_fuse_pass",      // conv-elemwise-bn
           "lite_conv_bn_fuse_pass",               //
           "lite_conv_elementwise_fuse_pass",      // conv-bn-elemwise
Z
(ref):  
zhaoying 已提交
63 64 65 66 67 68
// TODO(Superjomn) Refine the fusion related design to select fusion
// kernels for devices automatically.
#ifndef LITE_WITH_MLU  // mlu can not treat conv-conv parttern because kernel
                       // picker expect a int8 conv2d kernel
           "lite_conv_activation_fuse_pass",  //
#endif
69
           "lite_var_conv_2d_activation_fuse_pass",       //
70 71 72
           "lite_fc_fuse_pass",                           //
           "lite_shuffle_channel_fuse_pass",              //
           "lite_transpose_softmax_transpose_fuse_pass",  //
Z
zhupengyang 已提交
73
           "lite_interpolate_fuse_pass",                  //
74
           "identity_scale_eliminate_pass",               //
H
HappyAngel 已提交
75
           "elementwise_mul_constant_eliminate_pass",     //
76
           "lite_sequence_pool_concat_fuse_pass",         //
H
HappyAngel 已提交
77 78
#if (defined LITE_WITH_LIGHT_WEIGHT_FRAMEWORK) || (defined LITE_WITH_CUDA) || \
    (defined LITE_WITH_ARM)
Y
Yan Chunwei 已提交
79 80
           "lite_elementwise_add_activation_fuse_pass",  //
#endif
81 82
           "__xpu__resnet_fuse_pass",
           "__xpu__multi_encoder_fuse_pass",
83 84 85 86 87 88
           "quantized_op_attributes_inference_pass",  // Only for fully
                                                      // quantized model, infer
                                                      // the output scale and
                                                      // fix the attribute
                                                      // 'enable_int8' for all
                                                      // of the quantized ops.
89 90 91
           "npu_subgraph_pass",
           "xpu_subgraph_pass",
           "bm_subgraph_pass",
92
           "rknpu_subgraph_pass",
J
jackzhang235 已提交
93 94
           "mlu_subgraph_pass",

95 96
           "static_kernel_pick_pass",        // pick original kernel from graph
           "variable_place_inference_pass",  // inference arg/var's
J
jackzhang235 已提交
97 98

           "mlu_postprocess_pass",
99 100 101 102 103
           // info(target/precision/layout/device)
           // using kernel info
           "argument_type_display_pass",  // debug pass: show arg-type-node's
                                          // info
                                          // (target/precision/layout/device)
Y
Yan Chunwei 已提交
104

105 106 107
           "type_target_cast_pass",  // add io_copy/io_copy_once if meet
                                     // different targets when last and next
                                     // node
Y
Yan Chunwei 已提交
108 109 110
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

111 112 113
           "io_copy_kernel_pick_pass",    //
           "argument_type_display_pass",  //

Y
Yan Chunwei 已提交
114 115 116 117 118 119 120
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

           "type_precision_cast_pass",       //
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

121 122 123 124
           "type_layout_cast_pass",  // add layout/layout_once op if meet
                                     // different layout when last and next node
           "argument_type_display_pass",  //

Y
Yan Chunwei 已提交
125
           "variable_place_inference_pass",  //
126
           "argument_type_display_pass",
Y
Yan Chunwei 已提交
127 128

           "runtime_context_assign_pass",
129
           "argument_type_display_pass",
130

131
           "memory_optimize_pass"}};
132

133
      if (passes.size() == 1) {
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        // multi_stream_analysis_pass must be in the front of
        // runtime_context_assign_pass
        const std::string msa_pass{"multi_stream_analysis_pass"};
        const std::string depend_pass{"runtime_context_assign_pass"};
        if (passes[0] == msa_pass) {
          auto iter =
              std::find(passes_local.begin(), passes_local.end(), depend_pass);
          if (iter != passes_local.end()) {
            passes_local.insert(iter, msa_pass);
          } else {
            CHECK(false) << "Not find " << depend_pass;
          }
        } else {
          passes_local.push_back(passes[0]);
        }
149
      }
150
      RunPasses(passes_local);
Y
Yan Chunwei 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    } else {
      RunPasses(passes);
    }
    exec_scope_ = program.exec_scope();
  }

  const lite::Scope* exec_scope() const { return exec_scope_; }

  // Generate a new program based on the mir graph.
  std::unique_ptr<RuntimeProgram> GenRuntimeProgram() {
    auto pass = mir::PassManager::Global().LookUp<mir::GenerateProgramPass>(
        "generate_program_pass");
    pass->Apply(graph_);
    auto program = pass->GenProgram();
    CHECK(exec_scope_);
    program->set_exec_scope(exec_scope_);
    return program;
  }

  void InitTargetTypeTransformPass() {
    auto* pass =
        mir::PassManager::Global().LookUp<mir::TypeTargetTransformPass>(
            "type_target_cast_pass");
    CHECK(pass);
    CHECK(!valid_places_.empty());
    pass->SetValidPlaces(valid_places_);
  }

  // Generate C++ code which combines the inference program, model and weights.
  void GenCode(const std::string& code_dir);

  const mir::SSAGraph& ssa_graph() const {
    CHECK(graph_);
    return *graph_;
  }

  mir::SSAGraph* mutable_ssa_graph() {
    CHECK(graph_);
    return graph_.get();
  }

  lite::Scope* exec_scope() { return exec_scope_; }

 protected:
  void SpecifyKernelPickTactic(core::KernelPickFactor factor);

  // Specify the passes and run them.
  void RunPasses(const std::vector<std::string>& passes) {
    for (auto& x : passes) {
200 201
      LOG(INFO) << "== Running pass: " << x;
      mir::Pass* pass = mir::PassManager::Global().LookUp(x);
202 203 204 205 206
      if (!pass) {
        LOG(INFO) << "   - Skip " << x << " because the pass isn't found.";
        continue;
      }
      std::set<TargetType> targets;
207
      for (const auto& place : valid_places_) {
208
        targets.insert(place.target);
209
      }
210 211
      bool matched =
          PassMatchesTarget(*pass, targets) && PassMatchesKernels(*pass);
212
      if (!matched) {
213 214
        LOG(INFO) << "   - Skip " << x
                  << " because the target or kernel does not match.";
215 216 217 218
      } else {
        pass->Apply(graph_);
        LOG(INFO) << "== Finished running: " << x;
      }
Y
Yan Chunwei 已提交
219 220 221 222 223 224 225 226 227 228 229 230
    }
  }

 private:
  std::unique_ptr<mir::SSAGraph> graph_;
  std::vector<Place> valid_places_;
  lite::Scope* exec_scope_{};
  Program* program_{};
};

}  // namespace lite
}  // namespace paddle