act_op_test.cc 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <random>
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/operators/activation_ops.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

template void FillTensor<float, int>(Tensor* x,
                                     float lower = -2,
                                     float upper = -2);

void act_ref(const std::shared_ptr<operators::ActivationOp> op) {
  Scope* scope = op->scope();
  const OpInfo* op_info = op->op_info();
  auto op_type = op_info->Type();
  auto x = scope->FindTensor("x");
  auto out = scope->FindMutableTensor("out");
  auto out_ref = scope->FindMutableTensor("out_ref");
  out->Resize(x->dims());
  out_ref->Resize(x->dims());
  auto x_data = x->data<float>();
  auto out_data = out->mutable_data<float>();
  CHECK_EQ(x->numel(), out->numel());

  // "sigmoid","relu","tanh","relu_clipped","leaky_relu","softsign","hard_sigmoid"
  if (op_type == "sigmoid") {
    for (size_t i = 0; i < out->numel(); i++) {
      out_data[i] = 1.f / (1.f + std::exp(-x_data[i]));
    }
  } else if (op_type == "relu") {
    for (size_t i = 0; i < out->numel(); i++) {
      out_data[i] = std::max(0.f, x_data[i]);
    }
  } else if (op_type == "tanh") {
    for (size_t i = 0; i < out->numel(); i++) {
      out_data[i] = (std::exp(x_data[i]) - std::exp(-x_data[i])) /
                    (std::exp(x_data[i]) + std::exp(-x_data[i]));
    }
  } else if (op_type == "relu_clipped") {
    auto relu_clipped_coef = op_info->GetAttr<float>("Relu_clipped_coef");
    for (size_t i = 0; i < out->numel(); i++) {
      out_data[i] = std::min(std::max(0.f, x_data[i]), relu_clipped_coef);
    }
  } else if (op_type == "relu6") {
    for (size_t i = 0; i < out->numel(); i++) {
      out_data[i] = std::min(std::max(0.f, x_data[i]), 6.f);
    }
  } else if (op_type == "leaky_relu") {
    auto alpha = op_info->GetAttr<float>("alpha");
    for (size_t i = 0; i < out->numel(); i++) {
      out_data[i] = std::max(x_data[i], x_data[i] * alpha);
    }
  } else if (op_type == "softsign") {
    for (size_t i = 0; i < out->numel(); i++) {
      out_data[i] = x_data[i] / (1 + std::abs(x_data[i]));
    }
  } else if (op_type == "hard_sigmoid") {
    auto slope = op_info->GetAttr<float>("slope");
    auto offset = op_info->GetAttr<float>("offset");
    for (size_t i = 0; i < out->numel(); i++) {
      out_data[i] = std::min(1.f, slope * x_data[i] + offset);
      out_data[i] = std::max(0.f, out_data[i]);
    }
  } else {
    LOG(FATAL) << "unsupported activation type: " << op_type;
  }
}

void test_act(std::vector<int64_t> x_shape, std::string op_type) {
  // prepare input&output variables
  Scope scope;
  std::string x_var_name("x");
  std::string out_var_name("out");
  std::string out_ref_var_name("out_ref");
  auto* x = scope.NewTensor(x_var_name);
  auto* out = scope.NewTensor(out_var_name);
  auto* out_ref = scope.NewTensor(out_ref_var_name);
  x->Resize(x_shape);

  // initialize input&output data
  FillTensor<float>(x, 2, 8);

  // initialize op desc
  cpp::OpDesc opdesc;
  opdesc.SetType(op_type);
  opdesc.SetInput("X", {x_var_name});
  opdesc.SetOutput("Out", {out_var_name});
  if (op_type == "relu_clipped") {
    opdesc.SetAttr("Relu_clipped_coef", 3.f);
  } else if (op_type == "relu6") {
    opdesc.SetAttr("Relu_clipped_coef", 6.f);
  } else if (op_type == "leaky_relu") {
    opdesc.SetAttr("alpha", 0.02f);
  } else if (op_type == "hard_sigmoid") {
    opdesc.SetAttr("slope", 0.2f);
    opdesc.SetAttr("offset", 0.5f);
  }

119
  // create and convert op to MLU model, then run it on MLU
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
  auto op = CreateOp<operators::ActivationOp>(opdesc, &scope);
  // execute reference implementation and save to output tensor
  act_ref(op);
  out_ref->CopyDataFrom(*out);

  LaunchOp(op, {x_var_name}, {out_var_name});

  // compare results
  auto* out_data = out->mutable_data<float>();
  auto* out_ref_data = out_ref->mutable_data<float>();
  for (int i = 0; i < out->dims().production(); i++) {
    EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2);
  }
}

TEST(MLUBridges, activation) {
  std::vector<std::vector<int64_t>> shapes{{1}, {2, 3}, {1, 2, 3, 4}};
137
  std::vector<std::string> types{"sigmoid", "relu", "tanh", "leaky_relu"};
138 139 140 141 142 143 144 145 146 147 148 149
  for (auto x_shape : shapes) {
    for (auto op_type : types) {
      test_act(x_shape, op_type);
    }
  }
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

150 151 152
USE_SUBGRAPH_BRIDGE(sigmoid, kMLU)
USE_SUBGRAPH_BRIDGE(relu, kMLU)
USE_SUBGRAPH_BRIDGE(tanh, kMLU)
153
USE_SUBGRAPH_BRIDGE(leaky_relu, kMLU)