mobilenetv1_light_api.cc 2.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <stdio.h>
#include <vector>
#include "paddle_api.h"          // NOLINT
#include "paddle_use_kernels.h"  // NOLINT
#include "paddle_use_ops.h"      // NOLINT

using namespace paddle::lite_api;  // NOLINT

DEFINE_string(model_dir, "", "Model dir path.");

int64_t ShapeProduction(const shape_t& shape) {
  int64_t res = 1;
  for (auto i : shape) res *= i;
  return res;
}

32 33 34 35 36 37 38 39
void CheckInput(char*** argv) {
  if (FLAGS_model_dir == "") {
    printf("Usage: %s --model_dir=<your-nb-model-directory>\n", *argv[0]);
    exit(1);
  }
  printf("[WARN] model_dir:%s\n", FLAGS_model_dir.c_str());
}

Y
Yan Chunwei 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
void RunModel() {
  // 1. Set MobileConfig
  MobileConfig config;
  config.set_model_dir(FLAGS_model_dir);

  // 2. Create PaddlePredictor by MobileConfig
  std::shared_ptr<PaddlePredictor> predictor =
      CreatePaddlePredictor<MobileConfig>(config);

  // 3. Prepare input data
  std::unique_ptr<Tensor> input_tensor(std::move(predictor->GetInput(0)));
  input_tensor->Resize({1, 3, 224, 224});
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < ShapeProduction(input_tensor->shape()); ++i) {
    data[i] = 1;
  }

  // 4. Run predictor
  predictor->Run();

  // 5. Get output
  std::unique_ptr<const Tensor> output_tensor(
      std::move(predictor->GetOutput(0)));
  printf("Output dim: %d\n", output_tensor->shape()[1]);
  for (int i = 0; i < ShapeProduction(output_tensor->shape()); i += 100) {
    printf("Output[%d]: %f\n", i, output_tensor->data<float>()[i]);
  }
}

int main(int argc, char** argv) {
  google::ParseCommandLineFlags(&argc, &argv, true);
71
  CheckInput(&argv);
Y
Yan Chunwei 已提交
72 73 74
  RunModel();
  return 0;
}