sequence2batch.h 6.3 KB
Newer Older
xiebaiyuan's avatar
xiebaiyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "framework/lod_tensor.h"
#include "framework/tensor.h"

namespace paddle_mobile {
namespace operators {
namespace math {
template <typename DeviceType, typename T>
class CopyMatrixRowsFunctor {
 public:
  // If is_src_index is true,
  // copy the indexed rows of input src to the output dst.
  // If is_src_index is false,
  // copy the input src to the indexed rows of output dst.
  // The indexed rows are based on the input index.
  void operator()(const framework::Tensor& src, std::vector<size_t> index_lod,
                  framework::Tensor* dst, bool is_src_index);
};

template <typename DeviceType, typename T>
class LoDTensor2BatchFunctor {
  // Calculate the length of each sequence and
  // sort sequence index by the length.
  // example:  sequences = {s0, s1, s2}
  //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
  //           seq_info[3] = {(4, 5, 1), (0, 4, 0), (9, 3, 2)}
  //
  struct SeqInfo {
    SeqInfo(int start, int length, int seq_idx)
        : start(start), length(length), seq_idx(seq_idx) {}
    int start;
    int length;
    int seq_idx;
  };

 public:
  void operator()(const framework::LoDTensor& lod_tensor,
                  framework::LoDTensor* batch, bool is_cal_batch_lod,
                  bool is_reverse = false) {
    if (!is_cal_batch_lod) {
      auto lods = batch->lod();
      PADDLE_MOBILE_ENFORCE(
          (lods.size() > 2UL),
          "The LoD of LoDTensor should inlcude at least 2-level "
          "sequence information.");
      PADDLE_MOBILE_ENFORCE(
          (lods[1].size() == static_cast<size_t>(lod_tensor.dims()[0])),
          "The LoD information should be consistent with the dims.");
      CopyMatrixRowsFunctor<DeviceType, T> to_batch;
      to_batch(lod_tensor, lods[1], batch, true);
      return;
    }

    auto lods = lod_tensor.lod();
    PADDLE_MOBILE_ENFORCE((lods.size() == 1UL),
72 73
                          "Only support 1 level sequence, but %d is given",
                          lods.size());
xiebaiyuan's avatar
xiebaiyuan 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

    const auto& lod = lods[0];
    std::vector<SeqInfo> seq_info;
    for (size_t seq_id = 0; seq_id < lod.size() - 1; ++seq_id) {
      int length = lod[seq_id + 1] - lod[seq_id];
      seq_info.emplace_back(lod[seq_id], length, seq_id);
    }

    std::sort(seq_info.begin(), seq_info.end(),
              [](SeqInfo a, SeqInfo b) { return a.length > b.length; });

    // Calculate the start position of each batch.
    // example:  sequences = {s0, s1, s2}
    //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
    //           num_batch = 5,
    //           batchIndex = {b0, b1, b2, b3, b4}
    //           b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1
    //           batch_start_positions[6] = {0, 3, 6, 9, 11, 12}
    //              batch_start_positions[0] = len(b0)
    //              batch_start_positions[1] = len(b0) + len(b1)
    //              batch_start_positions[2] = len(b0) + len(b1) + len(b2)
    //              ...
    //           seq2batch_idx[12] = {4, 0, 9,
    //                                5, 1, 10,
    //                                6, 2, 11,
    //                                7, 3,
    //                                8}
    //           seq_order = {1, 0, 2}, the sort order.
    //               where 1 is the second sequence,
    //                     0 is the first sequence,
    //                     2 is the third sequence.
    // The num_batch represents batch size after rearranging the
    // input LodTensor. It is also the maximum length of input sequence.

    framework::LoD batch_lods;
    batch_lods.emplace_back(std::vector<size_t>{0});
    batch_lods.emplace_back(std::vector<size_t>{0});
    batch_lods.emplace_back(std::vector<size_t>{0});

    // batch_lods[0] is the start positions for batch LoDTensor
    int num_batch = seq_info[0].length;
    batch_lods[0].resize(static_cast<size_t>(num_batch + 1));
    // batch_lods[1] is the raw index in the input LoDTensor
    batch_lods[1].resize(static_cast<size_t>(lod_tensor.dims()[0]));
    // batch_lods[2] is the sort order for the input LoDTensor.
    batch_lods[2].resize(seq_info.size());

    size_t* batch_starts = batch_lods[0].data();
    size_t* seq2batch_idx = batch_lods[1].data();
    batch_starts[0] = 0;
    for (int n = 0; n < num_batch; n++) {
      auto batch_id = static_cast<int>(batch_starts[n]);
      for (size_t i = 0; i < seq_info.size(); ++i) {
        int seq_len = seq_info[i].length;
        int start = seq_info[i].start;
        if (n < seq_len) {
          seq2batch_idx[batch_id] =
              is_reverse ? start + seq_len - 1 - n : start + n;
          batch_id++;
        } else {
          break;
        }
      }
      batch_starts[n + 1] = static_cast<size_t>(batch_id);
    }
    size_t* seq_order = batch_lods[2].data();
    for (size_t i = 0; i < seq_info.size(); ++i) {
      seq_order[i] = seq_info[i].seq_idx;
    }
    batch->set_lod(batch_lods);

    CopyMatrixRowsFunctor<DeviceType, T> to_batch;
    to_batch(lod_tensor, batch_lods[1], batch, true);
  }
};

template <typename DeviceType, typename T>
class Batch2LoDTensorFunctor {
 public:
  void operator()(const framework::LoDTensor& batch,
                  framework::LoDTensor* lod_tensor) {
    auto in_lod = batch.lod();
    PADDLE_MOBILE_ENFORCE(
        (in_lod.size() > 2UL),
        "The LoD of LoDTensor should inlcude at least 2-level "
        "sequence information.");
    PADDLE_MOBILE_ENFORCE(
        (in_lod[1].size() == static_cast<size_t>(lod_tensor->dims()[0])),
        "The LoD information should be consistent with the dims.");
    CopyMatrixRowsFunctor<DeviceType, T> to_seq;
    to_seq(batch, in_lod[1], lod_tensor, false);
  }
};
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile