tensor.h 11.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#ifdef LITE_WITH_FPGA
18
#include "lite/backends/fpga/lite_tensor.h"
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#endif

#ifndef LITE_WITH_FPGA

#include <algorithm>
#include <functional>  // for multiplies
#include <memory>
#include <numeric>
#include <string>
#include <vector>
#include "lite/core/memory.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {

class DDimLite;
class TensorLite;

using DDim = lite::DDimLite;
using Tensor = lite::TensorLite;

H
haozech 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
template <typename ValueType, size_t initLength>
class SmallVector {
 public:
  SmallVector() {
    // VLOG(3)<<"call constructor";
    data_ = new ValueType[initLength]();
    //    data_ = static_cast<ValueType *>(malloc(DimLength *
    //    sizeof(ValueType)));
    //    data_.resize(DimLength);
    //    memset(data_, 0, DimLength * sizeof(ValueType));
    size_ = 0U;
    memory_size = initLength;
  }

  ~SmallVector() {
    // VLOG(3)<<"call deconstructor";
    if (data_ != nullptr) {
      delete[] data_;
      //    free(data_);
    }
    data_ = nullptr;
    size_ = 0U;
    memory_size = 0U;
  }

  size_t size() const {
    // VLOG(3)<<"call size()";
    return size_;
  }
  void resize(size_t new_size) {
    // VLOG(3)<<"call resize()";
    if (new_size > memory_size) {
      if (data_ != nullptr) {
        delete[] data_;
      }
      data_ = new ValueType[new_size]();
      memory_size = new_size;
    }
    size_ = new_size;
  }

  ValueType *mutable_data() { return data_; }
  const ValueType *data() const {
    // VLOG(3)<<"call data()";
    return data_;
  }

  ValueType operator[](int offset) const {
    // VLOG(3)<<"call operator[]";
    return data_[offset];
  }
  ValueType &operator[](int offset) {
    // VLOG(3)<<"call &operator[]";
    return data_[offset];
  }

 private:
  //  ValueType data_[DimLength];
  //  ValueType* data_{nullptr};
  ValueType *data_{nullptr};
  size_t size_{0U};
  size_t memory_size{0U};
};

Y
Yan Chunwei 已提交
105 106
class DDimLite {
 public:
H
haozech 已提交
107
  constexpr static size_t init_length = 4;
Y
Yan Chunwei 已提交
108
  using value_type = int64_t;
H
haozech 已提交
109
  using DDimVector = SmallVector<value_type, init_length>;
Y
Yan Chunwei 已提交
110 111

  DDimLite() = default;
H
haozech 已提交
112 113 114 115 116 117 118
  DDimLite(const DDimLite &a) {
    data_.resize(a.size());
    if (a.size() > 0U) {
      memcpy(
          data_.mutable_data(), a.data().data(), a.size() * sizeof(value_type));
    }  // deep copy
  }
Y
Yan Chunwei 已提交
119 120 121 122 123

  explicit DDimLite(const std::vector<value_type> &x) { ConstructFrom(x); }
  // DDimLite(std::initializer_list<value_type> init_list) :
  // DDimLite(std::vector<value_type>(init_list)) {}

H
haozech 已提交
124 125 126 127 128 129 130
  void ConstructFrom(const std::vector<value_type> &x) {
    data_.resize(x.size());
    if (x.size() > 0U) {
      memcpy(data_.mutable_data(), x.data(), x.size() * sizeof(value_type));
      // std::copy(x.data(), x.data() + x.size(), data_.mutable_data());
    }
  }
Y
Yan Chunwei 已提交
131 132
  value_type operator[](int offset) const { return data_[offset]; }
  value_type &operator[](int offset) { return data_[offset]; }
H
haozech 已提交
133 134 135 136 137 138 139 140 141
  std::vector<value_type> Vectorize() const {
    std::vector<value_type> vec;
    vec.resize(data_.size());
    if (data_.size() > 0U) {
      memcpy(vec.data(), data_.data(), data_.size() * sizeof(value_type));
      // std::copy(data_.data(), data_.data() + data_.size(), vec.data());
    }
    return vec;
  }
Y
Yan Chunwei 已提交
142 143

  size_t size() const { return data_.size(); }
H
haozech 已提交
144 145
  void resize(size_t size) { data_.resize(size); }
  bool empty() const { return data_.size() == 0U; }
Y
Yan Chunwei 已提交
146 147 148

  value_type production() const;

H
haozech 已提交
149 150 151 152 153 154 155 156 157
  const std::vector<value_type> data() const {
    std::vector<value_type> vec;
    vec.resize(data_.size());
    if (data_.size() > 0U) {
      memcpy(vec.data(), data_.data(), data_.size() * sizeof(value_type));
      // std::copy(data_.data(), data_.data() + data_.size(), vec.data());
    }
    return vec;
  }
Y
Yan Chunwei 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
  value_type count(int start, int end) const;

  DDimLite Slice(int start, int end) const;

  DDimLite Flatten2D(int col) const {
    return DDimLite(std::vector<value_type>(
        {Slice(0, col).production(), Slice(col, size()).production()}));
  }

  std::string repr() const;

  friend STL::ostream &operator<<(STL::ostream &os, const DDimLite &dims) {
    os << dims.repr();
    return os;
  }

H
haozech 已提交
174 175 176 177 178 179 180 181 182 183 184 185
  DDimLite &operator=(const DDimLite &a) {
    this->data_.resize(a.size());
    if (a.size() > 0U) {
      // std::copy(a.data().data(), a.data().data() + a.data().size(),
      // this->data_.mutable_data());
      memcpy(this->data_.mutable_data(),
             a.data().data(),
             a.size() * sizeof(value_type));
    }
    return *this;
  }

Y
Yan Chunwei 已提交
186 187 188 189 190 191 192 193 194
  friend bool operator==(const DDimLite &a, const DDimLite &b) {
    if (a.size() != b.size()) return false;
    for (size_t i = 0; i < a.size(); i++) {
      if (a[i] != b[i]) return false;
    }
    return true;
  }

  friend bool operator!=(const DDimLite &a, const DDimLite &b) {
195 196 197 198 199
    if (a.size() != b.size()) return true;
    for (size_t i = 0; i < a.size(); i++) {
      if (a[i] != b[i]) return true;
    }
    return false;
Y
Yan Chunwei 已提交
200 201 202
  }

 private:
H
haozech 已提交
203
  DDimVector data_;
Y
Yan Chunwei 已提交
204 205 206 207 208 209 210 211
};

using LoD = std::vector<std::vector<uint64_t>>;

// A light-weight tensor implementation.
class TensorLite {
 public:
  TensorLite() : buffer_(std::make_shared<Buffer>()) {}
212
  explicit TensorLite(std::shared_ptr<Buffer> buffer) : buffer_(buffer) {}
Y
Yan Chunwei 已提交
213 214

  template <typename DType, typename DimT, TargetType Target>
215
  void Assign(const DType *data, const DimT &dim) {
Y
Yan Chunwei 已提交
216 217 218 219 220 221 222 223 224 225 226 227
    Resize(dim);
    auto *dst = mutable_data<DType, void>(Target);
    CopySync<Target>(
        dst, data, dim.production() * sizeof(DType), IoDirection::HtoD);
  }

  // T is the data type and R is the return type
  // For OpenCL, the return type can be cl::Buffer
  // and the data type can be float/int8_t.
  // For other devices, T and R may be the same type.
  template <typename T, typename R = T>
  const R *data() const {
228 229
    return reinterpret_cast<const R *>(static_cast<char *>(buffer_->data()) +
                                       offset_);
Y
Yan Chunwei 已提交
230 231 232
  }

  void Resize(const DDimLite &ddim) { dims_ = ddim; }
233
  void Resize(const std::vector<int64_t> &x) { dims_.ConstructFrom(x); }
Y
Yan Chunwei 已提交
234 235 236 237 238 239 240 241

  const DDimLite &dims() const { return dims_; }
  int64_t numel() const { return dims_.production(); }

  const LoD &lod() const { return lod_; }
  LoD *mutable_lod() { return &lod_; }
  void set_lod(const LoD &lod) { lod_ = lod; }

242 243 244 245 246 247
  PrecisionType precision() const { return precision_; }
  void set_precision(PrecisionType precision) { precision_ = precision; }

  bool persistable() const { return persistable_; }
  void set_persistable(bool persistable) { persistable_ = persistable; }

Y
Yan Chunwei 已提交
248 249 250 251 252
  // T is the data type and R is the return type
  // For OpenCL, the return type can be cl::Buffer
  // and the data type can be float/int8_t.
  // For other devices, T and R may be the same type.
  template <typename T, typename R = T>
253
  R *mutable_data() {
254
    precision_ = lite_api::PrecisionTypeTrait<T>::Type();
255 256 257 258 259 260 261 262
    memory_size_ = dims_.production() * sizeof(T);
    buffer_->ResetLazy(target_, memory_size_);
    return reinterpret_cast<R *>(static_cast<char *>(buffer_->data()) +
                                 offset_);
  }

#ifdef LITE_WITH_OPENCL
  template <typename T, typename R = T>
263 264 265
  R *mutable_data(const size_t img_w,
                  const size_t img_h,
                  void *host_ptr = nullptr) {
266
    target_ = TARGET(kOpenCL);
267
    buffer_->ResetLazyImage2D<T>(target_, img_w, img_h, host_ptr);
268 269 270
    return static_cast<cl::Image2D *>(buffer_->data());
  }
#endif
Y
Yan Chunwei 已提交
271 272 273 274 275 276

  // T is the data type and R is the return type
  // For OpenCL, the return type can be cl::Buffer
  // and the data type can be float/int8_t.
  // For other devices, T and R may be the same type.
  template <typename T, typename R = T>
277 278
  R *mutable_data(TargetType target) {
    target_ = target;
279
    return mutable_data<T, R>();
280
  }
Y
Yan Chunwei 已提交
281 282 283 284 285 286 287 288
  void *mutable_data(size_t memory_size);
  void *mutable_data(TargetType target, size_t memory_size);

  const void *raw_data() const {
    return static_cast<char *>(
        (static_cast<char *>(buffer_->data()) + offset_));
  }

289 290 291 292 293
  void *raw_data() {
    return static_cast<char *>(
        (static_cast<char *>(buffer_->data()) + offset_));
  }

294 295 296 297
  void clear() {
    buffer_->Free();
    offset_ = 0;
  }
Y
Yan Chunwei 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310
  size_t data_size() const { return this->dims().production(); }

  size_t memory_size() const { return memory_size_; }

  size_t offset() const { return offset_; }

  bool IsInitialized() const { return buffer_->data(); }

  // Other share data to this.
  void ShareDataWith(const TensorLite &other);

  void CopyDataFrom(const TensorLite &other);

311 312
  void ResetBuffer(std::shared_ptr<Buffer> buffer, size_t memory_size);

Y
Yan Chunwei 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
  TargetType target() const { return target_; }

  template <typename T>
  TensorLite Slice(int64_t begin, int64_t end) const;

  friend STL::ostream &operator<<(STL::ostream &os, const TensorLite &tensor) {
    os << "Tensor:" << '\n';
    os << "dim: " << tensor.dims() << '\n';
    for (int i = 0; i < tensor.dims().production(); i++) {
      os << tensor.template data<float>()[i] << " ";
    }
    os << "\n";
    return os;
  }

 private:
  TargetType target_{TargetType::kHost};
330 331 332 333 334 335 336 337
  // precision_ and persistable_ are only used for persistable vars.
  // If your tensor wants to be saved and loaded correctly, you must
  // set values of precision_ and persistable_ after updating it.
  // If your tensor is just a temp tensor, such as activations,
  // you can ignore these two attributes.
  PrecisionType precision_{PrecisionType::kUnk};
  bool persistable_{false};

Y
Yan Chunwei 已提交
338 339 340 341 342 343 344 345 346 347 348
  DDimLite dims_;
  std::shared_ptr<Buffer> buffer_;
  LoD lod_;
  size_t memory_size_{};

  /// @brief Buffer may be shared with other tensors
  size_t offset_{0};
};

template <typename T>
TensorLite TensorLite::Slice(int64_t begin, int64_t end) const {
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
  CHECK_GE(begin, 0);
  CHECK_LE(end, dims_[0]);
  CHECK_LT(begin, end);
  if (dims_[0] == 1) {
    return *this;
  } else {
    int64_t base = numel() / dims_[0];
    TensorLite dst;
    dst.buffer_ = buffer_;
    dst.target_ = target_;
    auto dst_dims = dims_;
    dst_dims[0] = end - begin;
    dst.Resize(dst_dims);
    dst.offset_ = offset_ + static_cast<size_t>(begin * base) * sizeof(T);
    return dst;
  }
Y
Yan Chunwei 已提交
365 366 367 368 369 370 371 372 373
}

template <typename TensorT>
bool TensorCompareWith(const TensorT &a, const TensorT &b) {
  if (a.dims() != b.dims()) return false;
  if (memcmp(a.raw_data(), b.raw_data(), a.data_size()) != 0) return false;
  return true;
}

374 375 376
#ifdef LITE_WITH_OPENCL
template <>
const cl::Image2D *TensorLite::data<float, cl::Image2D>() const;
377

378 379
template <>  // use uint16_t represent half float
const cl::Image2D *TensorLite::data<uint16_t, cl::Image2D>() const;
380 381
#endif

Y
Yan Chunwei 已提交
382 383 384
}  // namespace lite
}  // namespace paddle

385
#endif  // #ifndef LITE_WITH_FPGA