gemv_int8_compute_test.cc 12.0 KB
Newer Older
X
Xiaoyang LI 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/tests/utils/fill_data.h"
#include "lite/tests/utils/naive_math_impl.h"
#ifdef LITE_WITH_ARM
#include "lite/backends/arm/math/funcs.h"
#endif  // LITE_WITH_ARM
#include "lite/core/context.h"
23
#include "lite/core/profile/timer.h"
X
Xiaoyang LI 已提交
24 25 26 27
#include "lite/core/tensor.h"
#include "lite/tests/utils/tensor_utils.h"

typedef paddle::lite::Tensor Tensor;
28
using paddle::lite::profile::Timer;
X
Xiaoyang LI 已提交
29 30 31 32 33 34 35 36 37 38 39

DEFINE_int32(power_mode,
             3,
             "power mode: "
             "0 for POWER_HIGH;"
             "1 for POWER_LOW;"
             "2 for POWER_FULL;"
             "3 for NO_BIND");
DEFINE_int32(threads, 1, "threads num");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
40
DEFINE_bool(basic_test, true, "do all tests");
X
Xiaoyang LI 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
DEFINE_bool(check_result, true, "check the result");

DEFINE_int32(M, 512, "gemv: M");
DEFINE_int32(N, 512, "gemv: N");

DEFINE_bool(traA, false, "gemv: A transpose");

DEFINE_bool(flag_relu, false, "do relu");
DEFINE_bool(flag_bias, false, "with bias");

bool test_gemv_int8(
    bool tra, int m, int n, bool has_bias, bool has_relu, int cls, int ths) {
  Tensor ta;
  Tensor tb;
  Tensor tc_int8;
  Tensor tc_fp32;
  Tensor tc_basic_int8;
  Tensor tc_basic_fp32;
  Tensor tbias;

  ta.Resize({m, n});
  tb.Resize({n});
  tc_int8.Resize({m});
  tc_fp32.Resize({m});
  tc_basic_int8.Resize({m});
  tc_basic_fp32.Resize({m});
  tbias.Resize({m});

  ta.set_precision(PRECISION(kInt8));
  tb.set_precision(PRECISION(kInt8));
  tc_int8.set_precision(PRECISION(kInt8));
  tc_fp32.set_precision(PRECISION(kFloat));
  tc_basic_int8.set_precision(PRECISION(kInt8));
  tc_basic_fp32.set_precision(PRECISION(kFloat));
  tbias.set_precision(PRECISION(kFloat));

  fill_tensor_rand(ta, -127, 127);
  fill_tensor_rand(tb, -127, 127);
  fill_tensor_rand(tbias, -1.f, 1.f);

  std::vector<float> scale_a(static_cast<size_t>(m), 1.f / 127);
  std::vector<float> scale_b = {1.f / 127};
  std::vector<float> scale_c = {n / 127.f};
  std::vector<float> scale_merge_fp32(static_cast<size_t>(m));
  std::vector<float> scale_merge_int8(static_cast<size_t>(m));
  for (int j = 0; j < m; ++j) {
    scale_merge_fp32[j] = scale_a[j] * scale_b[0];
    scale_merge_int8[j] = scale_merge_fp32[j] / scale_c[0];
  }

  LOG(INFO) << "gemv_int8 M: " << m << ", N: " << n
            << ", transA: " << (tra ? "true" : "false")
            << ", relu: " << (has_relu ? "true" : "false")
            << ", bias: " << (has_bias ? "true" : "false");
#ifdef LITE_WITH_ARM
  auto da = ta.mutable_data<int8_t>();
  auto db = tb.mutable_data<int8_t>();
  auto dc_int8 = tc_int8.mutable_data<int8_t>();
  auto dc_fp32 = tc_fp32.mutable_data<float>();
  auto dc_basic_int8 = tc_basic_int8.mutable_data<int8_t>();
  auto dc_basic_fp32 = tc_basic_fp32.mutable_data<float>();
  auto dbias = tbias.mutable_data<float>();

  if (FLAGS_check_result) {
    Tensor ta_fp32;
    Tensor tb_fp32;
    ta_fp32.Resize({m, n});
    ta_fp32.set_precision(PRECISION(kFloat));
    tb_fp32.Resize({n});
    tb_fp32.set_precision(PRECISION(kFloat));

    auto da_fp32 = ta_fp32.mutable_data<float>();
    auto db_fp32 = tb_fp32.mutable_data<float>();

    paddle::lite::arm::math::int8_to_fp32(
        da, da_fp32, scale_a.data(), 1, 1, ta.numel());
    paddle::lite::arm::math::int8_to_fp32(
        db, db_fp32, scale_b.data(), 1, 1, tb.numel());
    basic_gemv(m,
               n,
               da_fp32,
               db_fp32,
               dbias,
               dc_basic_fp32,
               1.f,
               0.f,
               false,
               has_bias,
               has_relu);
    paddle::lite::arm::math::fp32_to_int8(dc_basic_fp32,
                                          dc_basic_int8,
                                          scale_c.data(),
                                          1,
                                          1,
                                          tc_basic_fp32.numel());
  }
  Timer t0;
  //! compute
  double ops = 2.0 * m * n;
  std::unique_ptr<paddle::lite::KernelContext> ctx1(
      new paddle::lite::KernelContext);
  auto& ctx = ctx1->As<paddle::lite::ARMContext>();
  ctx.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), ths);
  /// warmup
  for (int j = 0; j < FLAGS_warmup; ++j) {
    paddle::lite::arm::math::gemv_int8(da,
                                       db,
                                       dc_fp32,
                                       false,
                                       m,
                                       n,
                                       scale_merge_fp32.data(),
                                       has_bias,
                                       dbias,
                                       has_relu,
                                       &ctx);
  }

  /// int8 output compute
  Tensor tbias_int8;
  tbias_int8.Resize(tbias.dims());
  tbias_int8.set_precision(PRECISION(kFloat));
  auto dbias_int8 = tbias_int8.mutable_data<float>();
  for (int l = 0; l < tbias_int8.numel(); ++l) {
    dbias_int8[l] = dbias[l] / scale_c[0];
  }
  for (int i = 0; i < FLAGS_repeats; ++i) {
168
    t0.Start();
X
Xiaoyang LI 已提交
169 170 171 172 173 174 175 176 177 178 179
    paddle::lite::arm::math::gemv_int8(da,
                                       db,
                                       dc_fp32,
                                       false,
                                       m,
                                       n,
                                       scale_merge_fp32.data(),
                                       has_bias,
                                       dbias,
                                       has_relu,
                                       &ctx);
180
    t0.Stop();
X
Xiaoyang LI 已提交
181 182 183 184
  }
  LOG(INFO) << "gemv_int8_int8 output: M: " << m << ", N: " << n
            << ", power_mode: " << cls << ", threads: " << ths
            << ", GOPS: " << ops * 1e-9f
185 186 187 188
            << " GOPS, avg time: " << t0.LapTimes().Avg()
            << " ms, min time: " << t0.LapTimes().Min()
            << " ms, mean GOPs: " << ops * 1e-6f / t0.LapTimes().Avg()
            << " GOPs, max GOPs: " << ops * 1e-6f / t0.LapTimes().Min()
X
Xiaoyang LI 已提交
189 190 191
            << " GOPs";

  /// fp32 output compute
192
  t0.Reset();
X
Xiaoyang LI 已提交
193
  for (int i = 0; i < FLAGS_repeats; ++i) {
194
    t0.Start();
X
Xiaoyang LI 已提交
195 196 197 198 199 200 201 202 203 204 205
    paddle::lite::arm::math::gemv_int8(da,
                                       db,
                                       dc_int8,
                                       false,
                                       m,
                                       n,
                                       scale_merge_int8.data(),
                                       has_bias,
                                       dbias_int8,
                                       has_relu,
                                       &ctx);
206
    t0.Stop();
X
Xiaoyang LI 已提交
207 208 209 210
  }
  LOG(INFO) << "gemm_int8_fp32 output: M: " << m << ", N: " << n
            << ", power_mode: " << cls << ", threads: " << ths
            << ", GOPS: " << ops * 1e-9f
211 212 213 214
            << " GOPS, avg time: " << t0.LapTimes().Avg()
            << " ms, min time: " << t0.LapTimes().Min()
            << " ms, mean GOPs: " << ops * 1e-6f / t0.LapTimes().Avg()
            << " GOPs, max GOPs: " << ops * 1e-6f / t0.LapTimes().Min()
X
Xiaoyang LI 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
            << " GOPs";

  if (FLAGS_check_result) {
    double max_ratio = 0;
    double max_diff = 0;
    /// fp32 result
    tensor_cmp_host(tc_basic_fp32, tc_fp32, max_ratio, max_diff);
    LOG(INFO) << "fp32 compare result, max diff: " << max_diff
              << ", max ratio: " << max_ratio;
    if (std::abs(max_ratio) > 1e-4f && std::abs(max_diff) > 5e-5f) {
      Tensor tdiff;
      tdiff.set_precision(PRECISION(kFloat));
      tdiff.Resize(tc_fp32.dims());
      tensor_diff(tc_basic_fp32, tc_fp32, tdiff);
      LOG(INFO) << "basic result: ";
      print_tensor(tc_basic_fp32);
      LOG(INFO) << "lite result: ";
      print_tensor(tc_fp32);
      LOG(INFO) << "diff result: ";
      print_tensor(tdiff);
      return false;
    }
    /// int8 result
    max_ratio = 0;
    max_diff = 0;
    tensor_cmp_host(tc_basic_int8, tc_int8, max_ratio, max_diff);
    LOG(INFO) << "int8 compare result, max diff: " << max_diff
              << ", max ratio: " << max_ratio;
    if (fabs(max_ratio) > 1e-4f) {
      Tensor tdiff;
      tdiff.Resize(tc_int8.dims());
      tdiff.set_precision(PRECISION(kInt8));
      tensor_diff(tc_basic_int8, tc_int8, tdiff);
      auto ptr = tdiff.data<int8_t>();
      auto ptr_basic_fp32 = tc_basic_fp32.data<float>();
      float count = 0;
      bool check = true;
      for (int i = 0; i < tdiff.numel(); ++i) {
        if (abs(ptr[i]) > 1) {
          check = false;
          LOG(ERROR) << "basic float data: " << ptr_basic_fp32[i]
                     << ", after scale: " << ptr_basic_fp32[i] / scale_c[0];
          break;
        }
        if (ptr[i] != 0) {
          LOG(ERROR) << "basic float data: " << ptr_basic_fp32[i]
                     << ", after scale: " << ptr_basic_fp32[i] / scale_c[0];
          count += 1;
        }
      }
      check =
          check && count < std::max(10, static_cast<int>(0.01 * tdiff.numel()));
      if (!check) {
        LOG(WARNING) << "int8 basic result";
        print_tensor(tc_basic_int8);
        LOG(WARNING) << "int8 lite result";
        print_tensor(tc_int8);
        LOG(WARNING) << "int8 diff tensor";
        print_tensor(tdiff);
        return false;
      }
    }
  }
#endif
  return true;
}

TEST(TestLiteGemvInt8, gemv_prepacked_int8) {
  if (FLAGS_basic_test) {
#ifdef LITE_WITH_ARM
    paddle::lite::DeviceInfo::Init();
#endif
    LOG(INFO) << "run basic sgemm test";
288
    for (auto& m : {1, 3, 8, 32}) {  // ,397
X
Xiaoyang LI 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
      for (auto& n : {1, 3, 13, 141, 512, 789}) {
        for (auto& tra : {false}) {
          for (auto& has_bias : {false, true}) {
            for (auto& has_relu : {false, true}) {
              for (auto& th : {1, 2, 4}) {
                auto flag = test_gemv_int8(
                    tra, m, n, has_bias, has_relu, FLAGS_power_mode, th);
                if (flag) {
                  LOG(INFO) << "test m = " << m << ", n=" << n
                            << ", bias: " << (has_bias ? "true" : "false")
                            << ", relu: " << (has_relu ? "true" : "false")
                            << ", trans A: " << (tra ? "true" : "false")
                            << " passed\n";
                } else {
                  LOG(FATAL) << "test m = " << m << ", n=" << n
                             << ", bias: " << (has_bias ? "true" : "false")
                             << ", relu: " << (has_relu ? "true" : "false")
                             << ", trans A: " << (tra ? "true" : "false")
                             << " failed\n";
                }
              }
            }
          }
        }
      }
    }
  }
}

TEST(TestGemvInt8Custom, gemv_prepacked_int8_custom) {
#ifdef LITE_WITH_ARM
  paddle::lite::DeviceInfo::Init();
#endif
  auto flag = test_gemv_int8(FLAGS_traA,
                             FLAGS_M,
                             FLAGS_N,
                             FLAGS_flag_bias,
                             FLAGS_flag_relu,
                             FLAGS_power_mode,
                             FLAGS_threads);
  if (!flag) {
    LOG(FATAL) << "test m = " << FLAGS_M << ", n=" << FLAGS_N
               << ", trans A: " << FLAGS_traA << ", bias: " << FLAGS_flag_bias
               << ", relu: " << FLAGS_flag_relu << " failed!!";
  }
  LOG(INFO) << "test m = " << FLAGS_M << ", n=" << FLAGS_N
            << ", trans A: " << FLAGS_traA << ", bias: " << FLAGS_flag_bias
            << ", relu: " << FLAGS_flag_relu << " passed!!";
}