conv_winograd.cc 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/conv_winograd.h"
#include <vector>
#include "lite/backends/arm/math/conv_impl.h"
#include "lite/backends/arm/math/packed_sgemm.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

template <>
void WinogradConv<PRECISION(kFloat), PRECISION(kFloat)>::ReInitWhenNeeded() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
T
TianXiaogang 已提交
29
  int threads = ctx.threads();
30 31 32 33 34 35 36 37 38 39

  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();

  if (last_shape_ == x_dims) {
    return;
  }

  int ic = x_dims[1];
T
TianXiaogang 已提交
40 41
  int ih = x_dims[2];
  int iw = x_dims[3];
42
  int oc = o_dims[1];
T
TianXiaogang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  int oh = o_dims[2];
  int ow = o_dims[3];
  int tile_block = 8;
#ifdef __aarch64__
  tile_block = 16;
#endif
  int parallel_threads =
      (((ow + 5) / 6) * ((oh + 5) / 6) + tile_block - 1) / tile_block;
  if (threads <= 2 && parallel_threads >= threads) {
    auto pad = *(param.paddings);
    int pad_h = pad[0];
    int pad_w = pad[2];
    int oc_pad = (oc + 3) / 4 * 4;
    int ic_pad = (ic + 3) / 4 * 4;
    const int new_input_size =
        (ic + 3) / 4 * 4 * (ih + pad_h * 2) * (iw + pad_w * 2);
    const int temp_size =
        (tile_block * ((ic + 3) / 4 + (oc + 3) / 4) * 256 + 512) * threads;
    ctx.ExtendWorkspace((temp_size + new_input_size) * sizeof(float));

    weights_.Resize({1, 1, 1, 64 * oc_pad * ic_pad});
    ctx.ExtendWorkspace((temp_size + new_input_size) * sizeof(float));
    void* trans_tmp_ptr = malloc(sizeof(float) * 8 * 8 * oc * ic);
    auto weights_data_ = weights_.mutable_data<float>();
    lite::arm::math::weight_trans_c4(
        weights_data_, param.filter->data<float>(), ic, oc, trans_tmp_ptr);
    free(trans_tmp_ptr);
  } else {
    int tile_w = (ow + 5) / 6;
    int tile_h = (oh + 5) / 6;

    int size_tile = tile_h * tile_w;
    int size_trans_channel = 8 * 8 * size_tile;
    int max_ch = ic > oc ? ic : oc;

    const int n_wino = size_tile;
    ctx.ExtendWorkspace((size_trans_channel * max_ch * 2 + n_wino) *
                        sizeof(float));

    const int m_wino = oc;
    int hblock = lite::arm::math::get_hblock(&ctx);
    int m_round = hblock * ((m_wino + hblock - 1) / hblock);
    weights_.Resize({1, 1, 1, 8 * 8 * m_round * ic});
    ctx.ExtendWorkspace((size_trans_channel * max_ch * 2 + n_wino) *
                        sizeof(float));
    auto weights_wino =
        static_cast<float*>(malloc(sizeof(float) * 8 * 8 * oc * ic));
    void* trans_tmp_ptr = malloc(sizeof(float) * 8 * 8 * oc * ic);
    lite::arm::math::winograd_transform_weights(
        weights_wino, param.filter->data<float>(), oc, ic, trans_tmp_ptr);
    auto weights_trans = weights_.mutable_data<float>();
    for (int i = 0; i < 64; ++i) {
      float* packed_weights = weights_trans + i * m_round * ic;
      const float* weights_wino_ptr = weights_wino + i * oc * ic;
      lite::arm::math::prepackA(packed_weights,
                                weights_wino_ptr,
                                1.f,
                                ic,
                                0,
                                m_wino,
                                0,
                                ic,
                                false,
                                &ctx);
    }
    free(trans_tmp_ptr);
    free(weights_wino);
  }
111 112 113 114 115
  last_shape_ = x_dims;
}

template <>
void WinogradConv<PRECISION(kFloat), PRECISION(kFloat)>::PrepareForRun() {
T
TianXiaogang 已提交
116
  ReInitWhenNeeded();
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
}

template <>
void WinogradConv<PRECISION(kFloat), PRECISION(kFloat)>::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  const auto* i_data = param.x->data<float>();
  const auto* w_data = weights_.data<float>();
  const auto* b_data = param.bias ? param.bias->data<float>() : nullptr;
  auto* o_data = param.output->mutable_data<float>();

  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();

  int iw = x_dims[3];  // nchw
  int ih = x_dims[2];
  int ic = x_dims[1];
  int bs = x_dims[0];
  int oh = o_dims[2];
  int ow = o_dims[3];
  int oc = o_dims[1];

T
TianXiaogang 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  int tile_block = 8;
#ifdef __aarch64__
  tile_block = 16;
#endif
  int threads = ctx.threads();
  int parallel_threads =
      (((ow + 5) / 6) * ((oh + 5) / 6) + tile_block - 1) / tile_block;
  if (threads <= 2 && parallel_threads >= threads) {
    lite::arm::math::conv_compute_6x6_3x3(i_data,
                                          o_data,
                                          bs,
                                          oc,
                                          oh,
                                          ow,
                                          ic,
                                          ih,
                                          iw,
                                          w_data,
                                          b_data,
                                          param,
                                          &ctx);
  } else {
    lite::arm::math::conv_winograd3x3(i_data,
                                      o_data,
                                      bs,
                                      oc,
                                      oh,
                                      ow,
                                      ic,
                                      ih,
                                      iw,
                                      w_data,
                                      b_data,
                                      param,
                                      &ctx);
  }
176 177 178 179 180 181
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle