conv_process.hpp 23.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

T
TianXiaogang 已提交
17 18 19
#ifndef conv_process_hpp
#define conv_process_hpp

Y
Yan Chunwei 已提交
20 21 22 23
#include <string.h>
#include <cmath>
#include <vector>

24 25 26 27 28 29
#include "lite/backends/fpga/KD/float16.hpp"
#include "lite/backends/fpga/KD/llapi/bias_scale.h"
#include "lite/backends/fpga/KD/llapi/filter.h"
#include "lite/backends/fpga/KD/pe_params.hpp"
#include "lite/backends/fpga/KD/tensor.hpp"
#include "lite/backends/fpga/KD/tensor_util.hpp"
Y
Yan Chunwei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

namespace paddle {
namespace zynqmp {

inline int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

inline int get_filter_num_per_div(Tensor* filter, int group_num) {
  auto chw = filter->shape().channel() * filter->shape().height() *
             filter->shape().width();
  auto num = filter->shape().num();
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

inline int get_split_num(Tensor* filter) {
  auto chw = filter->shape().channel() * filter->shape().height() *
             filter->shape().width();
  auto num = filter->shape().num();
  int div_capacity = filter::calc_division_capacity(chw);
T
TianXiaogang 已提交
51 52 53
  int filter_num_alignment = filter::get_filter_num_alignment();
  int aligned_num = align_to_x(num, filter_num_alignment);
  return filter::calc_split_num(aligned_num, div_capacity);
Y
Yan Chunwei 已提交
54 55
}

C
chonwhite 已提交
56 57 58 59 60 61 62 63 64 65
inline int get_pack_num(Tensor* filter, int group_num) {
  auto chw = filter->shape().channel() * filter->shape().height() *
             filter->shape().width();
  auto num = filter->shape().num();
  int div_capacity = filter::calc_division_capacity(chw);
  int filter_num_alignment = filter::get_filter_num_alignment();
  int aligned_num_per_group = align_to_x(num / group_num, filter_num_alignment);
  return filter::calc_pack_num(aligned_num_per_group, group_num, div_capacity);
}

Y
Yan Chunwei 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
inline void fill_scale_bias_const(ConvParam* param_) {
  int channel = param_->output->shape().channel();
  Shape sb_shape(N, {channel});
  float* new_scale_ptr = param_->scale()->mutableData<float>(FP32, sb_shape);
  float* new_bias_ptr = param_->bias()->mutableData<float>(FP32, sb_shape);
  for (int i = 0; i < channel; i++) {
    new_scale_ptr[i] = 1.0f;
    new_bias_ptr[i] = 0.0f;
  }
  param_->scale()->flush();
  param_->bias()->flush();
}

inline void combine_bn_params(BatchnormParam* bn, ConvParam* param_) {
  int channel = param_->output->shape().channel();
  Shape sb_shape(N, {channel});
  float* new_scale_ptr = param_->scale()->mutableData<float>(FP32, sb_shape);
  float* new_bias_ptr = param_->bias()->mutableData<float>(FP32, sb_shape);
  float* bn_scale_ptr = bn->scale->data<float>();
  float* bn_bias_ptr = bn->bias->data<float>();
  float* bn_var_ptr = bn->variance->data<float>();
  float* bn_mean_ptr = bn->mean->data<float>();
  float epsilon = bn->epsilon;
  for (int i = 0; i < channel; i++) {
    float new_scale = bn_scale_ptr[i] /
                      static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
    new_scale_ptr[i] = new_scale;
    new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i];
  }
}

inline void combine_add_bn_params(BatchnormParam* bn,
                                  Tensor* bias,
                                  ConvParam* param_) {
  int channel = param_->output->shape().channel();
  Shape sb_shape(N, {channel});
  float* new_scale_ptr = param_->scale()->mutableData<float>(FP32, sb_shape);
  float* new_bias_ptr = param_->bias()->mutableData<float>(FP32, sb_shape);
  if (bn != nullptr) {
    float* bn_scale_ptr = bn->scale->data<float>();
    float* bn_bias_ptr = bn->bias->data<float>();
    float* bn_var_ptr = bn->variance->data<float>();
    float* bn_mean_ptr = bn->mean->data<float>();
    float epsilon = bn->epsilon;
    float* bias_data = bias->data<float>();
    for (int i = 0; i < channel; i++) {
      float new_scale = bn_scale_ptr[i] /
                        static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
      new_scale_ptr[i] = new_scale;
      new_bias_ptr[i] =
          bn_bias_ptr[i] + (bias_data[i] - bn_mean_ptr[i]) * new_scale_ptr[i];
    }
  } else {
    for (int i = 0; i < channel; i++) {
      new_scale_ptr[i] = 1.0f;
      new_bias_ptr[i] = 0.0f;
    }
  }
  param_->scale()->flush();
  param_->bias()->flush();
  param_->scale()->setDataLocation(CPU);
  param_->bias()->setDataLocation(CPU);
}

C
chonwhite 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
inline int gcd_(int a, int b) {
  while (b) {
    int temp = a;
    a = b;
    b = temp % b;
  }
  return a;
}

inline int lcm_(int a, int b) { return a * b / gcd_(a, b); }

inline void format_bias_scale_new(Tensor* bias,
                                  Tensor* scale,
                                  Tensor* scale_bias) {
  Shape& bias_shape = bias->shape();
  int channel = bias_shape.channel();
  int repeat = 1;
  int alignment = 16;
  int length = channel;

  if (channel % alignment != 0 || channel < alignment) {
    int c_lcm = lcm_(channel, alignment);
    repeat = c_lcm / (channel);
  }
  Shape shape(N, {2 * channel * repeat});
  float16* scale_bias_data = scale_bias->mutableData<float16>(FP16, shape);

  float* bias_data_float = bias->data<float>();
  float* scale_data_float = scale->data<float>();

  for (int i = 0; i < repeat; i++) {
    for (int j = 0; j < length; j++) {
      float16 value_bias = float_to_half(bias_data_float[j]);
      scale_bias_data[i * length + j] = value_bias;
    }
  }
  for (int i = 0; i < repeat; i++) {
    for (int j = 0; j < length; j++) {
      float16 value_scale = float_to_half(scale_data_float[j]);
      scale_bias_data[i * length + j + length * repeat] = value_scale;
    }
  }
}

Y
Yan Chunwei 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187
inline void format_scale_bias(Tensor* scale,
                              Tensor* bias,
                              Tensor* filter,
                              Tensor* scale_bias,
                              int group) {
  float* scale_data = nullptr;
  float* bias_data = nullptr;
  if (scale != nullptr) {
    scale_data = scale->data<float>();
  }
  if (bias != nullptr) {
    bias_data = bias->data<float>();
  }
  int channel = filter->shape().num();
T
TianXiaogang 已提交
188 189 190 191 192 193
  int scale_bias_len = align_to_x(channel / group, BS_NUM_ALIGNMENT) * group;

  int c_per_group = channel / group;
  int aligned_c_per_group = align_to_x(channel / group, BS_NUM_ALIGNMENT);

  Shape bias_scale_shape(N, {2 * scale_bias_len});
Y
Yan Chunwei 已提交
194
  float* bs_data = scale_bias->mutableData<float>(FP32, bias_scale_shape);
T
TianXiaogang 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
  float* temp_data =
      reinterpret_cast<float*>(fpga_malloc(2 * scale_bias_len * sizeof(float)));
  memset(temp_data, 0, 2 * scale_bias_len * sizeof(float));

  std::vector<float> scales;
  if (scale_data != nullptr) {
    for (int i = 0; i < channel; ++i) {
      scales.push_back(scale_data[i]);
    }
    for (int i = 0; i < scale_bias_len - channel; i++) {
      scales.push_back(1);
    }
  } else {
    for (int i = 0; i < scale_bias_len; i++) {
      scales.push_back(1);
    }
Y
Yan Chunwei 已提交
211 212
  }

T
TianXiaogang 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
  for (int i = 0; i < scale_bias_len; ++i) {
    temp_data[i + scale_bias_len] = 1;
    temp_data[i] = 0;
  }

  for (int g = 0; g < group; g++) {
    for (int c = 0; c < c_per_group; c++) {
      int src_index = g * c_per_group + c;
      int dst_index = g * aligned_c_per_group + c;
      float scale_value = scales[src_index];
      float bias_value = bias_data == nullptr ? 0 : bias_data[src_index];
      temp_data[dst_index + scale_bias_len] = scale_value;
      temp_data[dst_index] = bias_value;
    }
  }

  bias_scale::format_bias_scale_array(
      &temp_data, scale_bias_len / group, scale_bias_len);
  memcpy(bs_data, temp_data, 2 * scale_bias_len * sizeof(float));
Y
Yan Chunwei 已提交
232 233
}

T
TianXiaogang 已提交
234 235 236
inline void format_filter(Tensor* filter,
                          Tensor* quantized_filter,
                          int group,
C
chonwhite 已提交
237 238
                          std::vector<float>& scales,  // NOLINT
                          float max) {
Y
Yan Chunwei 已提交
239
  float max_value = find_max(*filter);
C
chonwhite 已提交
240
  // max_value = max; //TODO: global quantization for filter
Y
Yan Chunwei 已提交
241
  Shape& filter_shape = filter->shape();
T
TianXiaogang 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

  int mem_size;
  std::vector<float> max_values;
  int8_t* quantized_data = filter::format_filter(filter->data<float>(),
                                                 mem_size,
                                                 filter_shape.num(),
                                                 filter_shape.channel(),
                                                 filter_shape.height(),
                                                 filter_shape.width(),
                                                 group,
                                                 max_value,
                                                 max_values);

  float mem_factor = mem_size * 1.0f / filter->shape().numel();
  quantized_filter->setMemScale(mem_factor);

Y
Yan Chunwei 已提交
258
  quantized_filter->setAligned(true);
T
TianXiaogang 已提交
259
  int8_t* src = quantized_filter->mutableData<int8_t>(INT8, filter->shape());
Y
Yan Chunwei 已提交
260 261 262
  quantized_filter->scale()[0] = max_value / 127.0f;
  quantized_filter->scale()[1] = 127.0f / max_value;

T
TianXiaogang 已提交
263
  memcpy(src, quantized_data, mem_size);
Y
Yan Chunwei 已提交
264
  quantized_filter->flush();
C
chonwhite 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
  fpga_free(quantized_data);

  // for (size_t i = 0; i < max_values.size(); i++) {
  //   // scales.push_back(max_values[i] / max_value);
  //   scales.push_back(1.0f);
  // }

  // filter->saveToFile("filter.txt");
  // std::ofstream ofs;
  // ofs.open("quant.txt");
  // for (int i = 0; i < mem_size; i++) {
  //   float value = quantized_data[i];
  //   ofs << value << std::endl;
  // }
  // ofs.close();
  // exit(-1);
Y
Yan Chunwei 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
}

inline void format_dw_filter(Tensor* filter,
                             Tensor* quantized_filter,
                             float* scale) {
  int num = filter->shape().num();
  int height = filter->shape().height();
  int width = filter->shape().width();
  auto memory_size = filter->shape().memorySize(sizeof(float));
  auto new_data = (float*)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, filter->data<float>(), memory_size);

  size_t size =
      filter::format_dwconv_filter(&new_data, num, height, width, scale);
  float16* src = quantized_filter->mutableData<float16>(FP16, filter->shape());

  memcpy(src, new_data, size);
  quantized_filter->flush();

  fpga_free(new_data);
}

inline void format_fc_filter(Tensor* filter, Tensor* quantized_filter) {
  float max_value = find_max(*filter);
  Shape& filter_shape = filter->shape();
  quantized_filter->setAligned(true);
  quantized_filter->mutableData<int8_t>(INT8, filter->shape());
  quantized_filter->scale()[0] = max_value / 127.0f;
  quantized_filter->scale()[1] = 127.0f / max_value;

  size_t memory_size = filter->shape().memorySize(sizeof(float));
  auto new_data = (float*)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, filter->data<float>(), memory_size);

  int8_t* src = quantized_filter->mutableData<int8_t>(INT8, filter->shape());
  memcpy(src, new_data, quantized_filter->shape().memorySize(sizeof(int8_t)));
  quantized_filter->flush();
  fpga_free(new_data);
}

inline void split_filter_num(const ConvParam& c_param) {
  ConvParam& param = const_cast<ConvParam&>(c_param);
  Tensor* input = param.input;
  Tensor* out = param.output;
  Tensor* filter = param.filter;
  auto channel = out->shape().channel();
C
chonwhite 已提交
327
  int split_num = get_split_num(param.filter);
Y
Yan Chunwei 已提交
328 329
  int filter_num_per_div = get_filter_num_per_div(filter, param.groups);

C
chonwhite 已提交
330
  float max = find_max(*filter);
T
TianXiaogang 已提交
331

Y
Yan Chunwei 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
  Shape& out_shape = out->shape();
  for (int i = 0; i < split_num; i++) {
    BasicConvParam* conv_param = new BasicConvParam();
    conv_param->output.setDataLocation(Device);
    conv_param->output.setAligned(true);

    int filter_num = filter->shape().num();
    float16* out_address = nullptr;
    float* out_scale_address = nullptr;

    ConvArgs& args = conv_param->args;

    if (split_num == 1) {
      out_address = out->data<float16>();
      out_scale_address = out->scale();
    }
    filter_num = i == split_num - 1
                     ? channel - (split_num - 1) * filter_num_per_div  // NOLINT
                     : filter_num_per_div;

    if (split_num != 1) {
      Shape shape(NHWC, {1, out_shape.height(), out_shape.width(), filter_num});
      out_address = conv_param->output.mutableData<float16>(FP16, shape);
      out_scale_address = conv_param->output.scale();
    }
    Shape f_shape(NCHW,
                  {filter_num,
                   filter->shape().channel(),
                   filter->shape().height(),
                   filter->shape().width()});

    Tensor new_filter;
    float* new_filter_data = new_filter.mutableData<float>(FP32, f_shape);
    int filter_hwc = filter->shape().height() * filter->shape().width() *
                     filter->shape().channel();

    memcpy(new_filter_data,
           filter->data<float>() + i * filter_num_per_div * filter_hwc,
           filter_num * filter_hwc * sizeof(float));
    new_filter.flush();
    conv_param->filter.mutableData<float>(FP32, f_shape);
T
TianXiaogang 已提交
373

C
chonwhite 已提交
374 375
    std::vector<float> v;  // TODO(chonwhite) change variable name;
    format_filter(&new_filter, &(conv_param->filter), param.groups, v, max);
T
TianXiaogang 已提交
376
    conv_param->filter.setDataType(INT8);
Y
Yan Chunwei 已提交
377 378 379 380 381 382

    Tensor scale;
    Tensor bias;

    int chnnnel_start = i * filter_num_per_div;

C
chonwhite 已提交
383
    Shape s_shape(NC, {1, filter_num});
Y
Yan Chunwei 已提交
384 385 386
    float* scale_data = scale.mutableData<float>(FP32, s_shape);
    float* bias_data = bias.mutableData<float>(FP32, s_shape);
    for (int n = 0; n < filter_num; n++) {
C
chonwhite 已提交
387
      scale_data[n] = param.scale()->data<float>()[n + chnnnel_start];
Y
Yan Chunwei 已提交
388 389 390 391
    }
    for (int n = 0; n < filter_num; n++) {
      bias_data[n] = param.bias()->data<float>()[n + chnnnel_start];
    }
C
chonwhite 已提交
392
    format_bias_scale_new(&bias, &scale, &conv_param->scaleBias);
Y
Yan Chunwei 已提交
393 394 395
    conv_param->scaleBias.flush();

    args.group_num = param.groups;
C
chonwhite 已提交
396
    args.sb_address = conv_param->scaleBias.data<float16>();
Y
Yan Chunwei 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409
    args.kernel.stride_h = param.strides[1];
    args.kernel.stride_w = param.strides[0];
    args.kernel.height = new_filter.shape().height();
    args.kernel.width = new_filter.shape().width();

    args.filter_address = conv_param->filter.data<int8_t>();
    args.filter_num = filter_num;
    args.filter_scale_address = conv_param->filter.scale();
    args.image.address = input->data<void>();
    args.image.scale_address = input->scale();
    args.image.channels = input->shape().channel();
    args.image.width = input->shape().width();
    args.image.height = input->shape().height();
T
TianXiaogang 已提交
410
    args.image.pad_width = param.paddings[1];
Y
Yan Chunwei 已提交
411
    args.image.pad_height = param.paddings[0];
C
chonwhite 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    args.dilation = param.dilations[0];

    args.output.address = out_address;
    args.output.scale_address = out_scale_address;
    param.splitParams().push_back(conv_param);
  }
}

inline void pack_channel_filter(const ConvParam& c_param) {
  ConvParam& param = const_cast<ConvParam&>(c_param);
  Tensor* input = param.input;
  Tensor* out = param.output;
  Tensor* filter = param.filter;
  int filter_num_alignment = filter::get_filter_num_alignment();
  auto filter_num = filter->shape().num();
  int pack_num = get_pack_num(param.filter, param.groups);
  int group_per_pack = (param.groups + pack_num - 1) / pack_num;
  int filter_per_group = filter_num / param.groups;
  int filter_per_pack = filter_per_group * group_per_pack;
  int channel_per_pack = filter->shape().channel() * group_per_pack;

  float max = find_max(*filter);

  Shape& out_shape = out->shape();
C
chonwhite 已提交
436

C
chonwhite 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
  for (int i = 0; i < pack_num; i++) {
    BasicConvParam* conv_param = new BasicConvParam();

    conv_param->output.setDataLocation(Device);
    conv_param->output.setAligned(true);

    float16* out_address = nullptr;
    float* out_scale_address = nullptr;

    float16* input_address = nullptr;

    ConvArgs& args = conv_param->args;

    if (pack_num == 1) {
      out_address = out->data<float16>();
      out_scale_address = out->scale();
    }

    int new_group = param.groups;
    int filter_current_pack = filter->shape().num();
    int channel_current_pack = input->shape().channel();

    new_group = i == pack_num - 1
                    ? param.groups - (pack_num - 1) * group_per_pack
                    : group_per_pack;
    filter_current_pack = new_group * filter_per_group;
    channel_current_pack = new_group * filter->shape().channel();

    if (pack_num == 1) {
      input_address = input->data<float16>();
    } else {
      Shape in_shape(NCHW,
                     {1,
                      channel_current_pack,
                      input->shape().height(),
                      input->shape().width()});
      input_address = conv_param->input.mutableData<float16>(FP16, in_shape);
    }

    if (pack_num != 1) {
      Shape shape(
          NHWC,
          {1, out_shape.height(), out_shape.width(), filter_current_pack});
      out_address = conv_param->output.mutableData<float16>(FP16, shape);
      out_scale_address = conv_param->output.scale();
    }
    Shape f_shape(NCHW,
                  {filter_current_pack,
                   filter->shape().channel(),
                   filter->shape().height(),
                   filter->shape().width()});

    Tensor new_filter;
    float* new_filter_data = new_filter.mutableData<float>(FP32, f_shape);
    int filter_hwc = filter->shape().height() * filter->shape().width() *
                     filter->shape().channel();

    memcpy(new_filter_data,
           filter->data<float>() + i * filter_per_pack * filter_hwc,
           filter_current_pack * filter_hwc * sizeof(float));
    new_filter.flush();
    conv_param->filter.mutableData<float>(FP32, f_shape);

    float mem_factor = filter_num_alignment / filter_per_pack;
    conv_param->filter.setMemScale(mem_factor);

    std::vector<float> v;  // TODO(chonwhite) change variable name
    format_filter(&new_filter, &(conv_param->filter), new_group, v, max);
    conv_param->filter.setDataType(INT8);

    Tensor scale;
    Tensor bias;

    int chnnnel_start = i * filter_per_pack;

    Shape s_shape(NC, {1, filter_current_pack});
    float* scale_data = scale.mutableData<float>(FP32, s_shape);
    float* bias_data = bias.mutableData<float>(FP32, s_shape);
    for (int n = 0; n < filter_current_pack; n++) {
      scale_data[n] = param.scale()->data<float>()[n + chnnnel_start];
    }
    for (int n = 0; n < filter_current_pack; n++) {
      bias_data[n] = param.bias()->data<float>()[n + chnnnel_start];
    }
    format_bias_scale_new(&bias, &scale, &conv_param->scaleBias);
    conv_param->scaleBias.flush();

    args.group_num = new_group;
    args.sb_address = conv_param->scaleBias.data<float16>();
    args.kernel.stride_h = param.strides[1];
    args.kernel.stride_w = param.strides[0];
    args.kernel.height = new_filter.shape().height();
    args.kernel.width = new_filter.shape().width();

    args.filter_address = conv_param->filter.data<int8_t>();
    args.filter_num = filter_current_pack;
    args.filter_scale_address = conv_param->filter.scale();
    args.image.address = input_address;
    args.image.scale_address = input->scale();
    args.image.channels = channel_current_pack;
    args.image.width = input->shape().width();
    args.image.height = input->shape().height();
    args.image.pad_width = param.paddings[1];
    args.image.pad_height = param.paddings[0];
T
TianXiaogang 已提交
541 542
    args.dilation = param.dilations[0];

Y
Yan Chunwei 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556
    args.output.address = out_address;
    args.output.scale_address = out_scale_address;
    param.splitParams().push_back(conv_param);
  }
}

inline void split_channel(const ConvParam& c_param) {
  ConvParam& param = const_cast<ConvParam&>(c_param);
  Tensor* input = param.input;
  Tensor* output = param.output;
  input->syncToCPU();

  int num = ceil(input->shape().channel() * 1.0f / 2047);
  int channel = input->shape().channel() / num;
T
TianXiaogang 已提交
557

Y
Yan Chunwei 已提交
558 559
  Shape bs_shape(N, {channel});

C
chonwhite 已提交
560 561
  float max = 1.0f;

Y
Yan Chunwei 已提交
562 563 564 565 566 567 568 569 570 571 572
  for (int i = 0; i < num; i++) {
    BasicConvParam* conv_param = new BasicConvParam();

    // input && output;
    Shape in_shape(
        NCHW, {1, channel, input->shape().height(), input->shape().width()});
    conv_param->input.shareDataWith(input, in_shape, channel * i);
    conv_param->output.mutableData<float16>(FP16, output->shape());

    // filter transformation;
    Shape f_shape(NCHW, {param.filter->shape().num(), channel, 1, 1});
T
TianXiaogang 已提交
573

Y
Yan Chunwei 已提交
574 575 576 577 578 579 580 581 582 583
    Tensor new_filter;

    float* dst = new_filter.mutableData<float>(FP32, f_shape);
    float* src = param.filter->data<float>() + i * channel;
    for (int n = 0; n < f_shape.num(); n++) {
      memcpy(dst, src, channel * sizeof(float));
      dst += channel;
      src += param.filter->shape().channel();
    }
    new_filter.flush();
T
TianXiaogang 已提交
584
    std::vector<float> scales;
C
chonwhite 已提交
585 586
    format_filter(
        &new_filter, &(conv_param->filter), param.groups, scales, max);
Y
Yan Chunwei 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

    Tensor bias;
    Tensor scale;

    float* bias_data = bias.mutableData<float>(FP32, bs_shape);
    float* scale_data = scale.mutableData<float>(FP32, bs_shape);
    for (int c = 0; c < channel; c++) {
      scale_data[c] = 1;
      bias_data[c] = param.bias()->data<float>()[c] / num;
    }
    scale.flush();
    bias.flush();
    format_scale_bias(&scale,
                      &bias,
                      &conv_param->filter,
                      &conv_param->scaleBias,
                      param.groups);
    conv_param->scaleBias.flush();

    ConvArgs& args = conv_param->args;
    args.group_num = param.groups;
    args.sb_address = conv_param->scaleBias.data<float>();
    args.kernel.stride_h = param.strides[1];
    args.kernel.stride_w = param.strides[0];
    args.kernel.height = new_filter.shape().height();
    args.kernel.width = new_filter.shape().width();

    args.filter_address = conv_param->filter.data<int8_t>();
    args.filter_num = f_shape.num();
    args.filter_scale_address = conv_param->filter.scale();
    args.image.address = conv_param->input.mutableData<void>();
    args.image.scale_address = conv_param->input.scale();

    args.image.channels = conv_param->input.shape().channel();
    args.image.width = conv_param->input.shape().width();
    args.image.height = conv_param->input.shape().height();
T
TianXiaogang 已提交
623 624 625
    args.image.pad_width = param.paddings[1];
    args.image.pad_height = param.paddings[0];
    args.dilation = param.dilations[0];
Y
Yan Chunwei 已提交
626 627 628 629 630 631 632 633 634 635
    args.output.address = conv_param->output.mutableData<void>();
    args.output.scale_address = conv_param->output.scale();
    param.splitParams().push_back(conv_param);
  }
}

inline int fill_split_arg(const ConvParam& c_param) {
  ConvParam& param = const_cast<ConvParam&>(c_param);
  Tensor* input = param.input;
  Tensor* output = param.output;
C
chonwhite 已提交
636

Y
Yan Chunwei 已提交
637 638 639 640
  if (output->shape().dimSize() == 4 && input->shape().channel() > 2047 &&
      input->shape().width() == 1) {
    split_channel(c_param);
    return 1;
C
chonwhite 已提交
641
  } else if (param.groups == 1) {
Y
Yan Chunwei 已提交
642 643
    split_filter_num(c_param);
    return 0;
C
chonwhite 已提交
644 645 646
  } else {
    pack_channel_filter(c_param);
    return 0;
Y
Yan Chunwei 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
  }
}

inline bool compute_conv(const ConvParam& c_conv_params) {
  ConvParam& conv_params = const_cast<ConvParam&>(c_conv_params);
  std::vector<BasicConvParam*>& params = conv_params.splitParams();
  int ret = 0;
  for (auto conv_param : params) {
    ret |= compute_fpga_conv_basic(conv_param->args);
  }
  size_t size = params.size();
  if (ret == 0 && size > 1) {
    Tensor& img = params[0]->output;
    for (int i = 0; i < 1; i++) {
      for (int i = 0; i < img.shape().numel(); i++) {
        float value = half_to_float(img.data<float16>()[i]);
      }
    }
  }
  return ret == 0;
}

}  // namespace zynqmp
}  // namespace paddle
T
TianXiaogang 已提交
671 672

#endif /* conv_process_hpp */