batch_norm_op.cc 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/rknpu/bridges/graph.h"
#include "lite/kernels/rknpu/bridges/utility.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace rknpu {

int BatchNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[RKNPU] Converting " + op_type + "...";

  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x_type = kernel->GetInputDeclType("X");
  CHECK(x_type->layout() == DATALAYOUT(kNCHW));
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();
  auto scale_name = op_info->Input("Scale").front();
  auto scale_type = kernel->GetInputDeclType("Scale");
  CHECK(scale_type->layout() == DATALAYOUT(kNCHW));
  auto scale = scope->FindMutableTensor(scale_name);
  auto bias_name = op_info->Input("Bias").front();
  auto bias_type = kernel->GetInputDeclType("Bias");
  CHECK(bias_type->layout() == DATALAYOUT(kNCHW));
  auto bias = scope->FindMutableTensor(bias_name);
  auto mean_name = op_info->Input("Mean").front();
  auto mean_type = kernel->GetInputDeclType("Mean");
  CHECK(mean_type->layout() == DATALAYOUT(kNCHW));
  auto mean = scope->FindMutableTensor(mean_name);
  auto variance_name = op_info->Input("Variance").front();
  auto variance_type = kernel->GetInputDeclType("Variance");
  CHECK(variance_type->layout() == DATALAYOUT(kNCHW));
  auto variance = scope->FindMutableTensor(variance_name);
  auto y_name = op_info->Output("Y").front();
  auto y_type = kernel->GetOutputDeclType("Y");
  auto y = scope->FindMutableTensor(y_name);
  CHECK(y_type->layout() == DATALAYOUT(kNCHW));
  float momentum = op_info->GetAttr<float>("momentum");
  float epsilon = op_info->GetAttr<float>("epsilon");
  int mode = 1;  // bnScale, bnBias tensor dims are 1xCx1x1
  bool use_global_stats = op_info->GetAttr<bool>("use_global_stats");

  // for quantization
  bool enable_int8 = false;
  float input_scale = 1.0;
  float output_scale = 1.0;
  int bit_length = 8;
  DataLayoutType layout = DATALAYOUT(kNCHW);
  PrecisionType precision = PRECISION(kFloat);

  if (op_info->HasAttr("enable_int8")) {
    enable_int8 = op_info->GetAttr<bool>("enable_int8");
    input_scale = op_info->GetAttr<float>("input_scale");
    bit_length = op_info->GetAttr<int>("bit_length");
    output_scale = op_info->GetAttr<float>("output_scale");

    if (enable_int8) {
      precision = PRECISION(kInt8);
    }
  }

  // X node
  std::shared_ptr<Node> x_node = nullptr;
  if (graph->Has(x_name)) {
    x_node = graph->Get(x_name);
  } else {
    x_node = graph->Add(x_name, *x);
  }

  // Scale, Bias, Mean, Variance node
  auto scale_node = graph->Add(scale_name, *scale);
  auto bias_node = graph->Add(bias_name, *bias);
  auto mean_node = graph->Add(mean_name, *mean);
  auto variance_node = graph->Add(variance_name, *variance);

  std::shared_ptr<Node> output_node = nullptr;
  QuantizationInfo output_qnt;

  output_qnt.enable_int8 = enable_int8;

  if (enable_int8) {
    output_qnt.quant_bits = bit_length;
    output_qnt.scale.push_back(output_scale);
    y->mutable_data<int8_t>();
  }

  output_node = graph->Add(y_name, *y, precision, layout, output_qnt);

  std::vector<std::shared_ptr<rk::nn::Tensor>> inputs;
  std::vector<std::shared_ptr<rk::nn::Tensor>> outputs;

  inputs.push_back(x_node->data());
  inputs.push_back(mean_node->data());
  inputs.push_back(variance_node->data());
  inputs.push_back(scale_node->data());
  inputs.push_back(bias_node->data());
  outputs.push_back(output_node->data());

  rk::nn::BatchNormAttr attrs;
  attrs.eps = epsilon;

  auto rGraph = graph->GetHandle();
  auto bn = rGraph->AddOperator(
      rk::nn::OperatorType::BATCH_NORM, inputs, outputs, &attrs);

  return SUCCESS;
}

}  // namespace rknpu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(batch_norm,
                         kRKNPU,
                         paddle::lite::subgraph::rknpu::BatchNormConverter);