conv_add_arm_func.h 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADD_OP
#pragma once

#include <vector>
#include "operators/math/conv_func.h"
H
hjchen2 已提交
20
#include "operators/math/depthwise_conv3x3.h"
21 22 23 24 25 26 27
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {
28

N
nhzlx 已提交
29
void ConvAddBasic(const FusionConvAddParam<CPU> &param) {
30 31 32 33
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
  Tensor bias = *param.Bias();
  Tensor *output = param.Output();
H
hjchen2 已提交
34
  output->mutable_data<float>();
C
codeWorm 已提交
35 36
  float *biase_data = bias.data<float>();

H
hjchen2 已提交
37
  int axis = param.Axis();
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  int groups = param.Groups();
  std::vector<int> strides = param.Strides();
  std::vector<int> paddings = param.Paddings();
  std::vector<int> dilations = param.Dilations();

  const int batch_size = static_cast<int>(input->dims()[0]);

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));

  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
      framework::flatten_to_2d(col_shape, data_dim + 1);

  bool is_expand =
      math::IsExpand(filter_shape_vec, strides, paddings, dilations);
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
    col.mutable_data<float>(col_shape);
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
      input->dims(), 1, static_cast<int>(input->dims().size()));

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

  math::Vol2ColFunctor<CPU, float> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;

  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }
      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
H
hjchen2 已提交
111
      math::MatMul<float, float>(filter_slice, false, col_matrix, false,
112 113
                                 static_cast<float>(1), &out_slice,
                                 static_cast<float>(1), false, biase_data);
114 115 116 117 118
    }
  }
}

template <typename P>
N
nhzlx 已提交
119
void ConvAddCompute(const FusionConvAddParam<CPU> &param) {
120
  param.Output()->mutable_data<float>();
121 122 123
  if (param.Groups() == param.Input()->dims()[1] &&
      param.Input()->dims()[1] == param.Output()->dims()[1] &&
      param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
xiebaiyuan's avatar
xiebaiyuan 已提交
124 125
      param.Filter()->dims()[2] == 3 && param.Strides()[0] == 1 &&
      param.paddings_[0] == 1) {
126
    math::DepthwiseConv3x3s1p1(param.Input(), param.Filter(), param.Output(),
127
                               param.Bias(), true, false);
128 129 130
  } else if (param.Groups() == param.Input()->dims()[1] &&
             param.Input()->dims()[1] == param.Output()->dims()[1] &&
             param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
E
eclipsess 已提交
131
             param.Filter()->dims()[2] == 3 && param.Strides()[0] == 2) {
E
eclipsess 已提交
132 133 134 135
    //        math::DepthwiseConv3x3(param.Input(), param.Strides(),
    //        param.Paddings(),
    //                               param.Filter(), param.Bias(),
    //                               param.Output(), false);
136 137
    if (param.Paddings()[0] == 0) {
      math::DepthwiseConv3x3s2p0(param.Input(), param.Filter(), param.Output(),
138
                                 param.Bias(), true, false);
139 140
    } else {
      math::DepthwiseConv3x3s2p1v2(param.Input(), param.Filter(),
141
                                   param.Output(), param.Bias(), true, false);
142
    }
143 144 145 146 147 148 149 150 151
  } else {
    ConvAddBasic(param);
  }
}

}  // namespace operators
}  // namespace paddle_mobile

#endif