dwconv_bn_relu_kernel.cpp 5.7 KB
Newer Older
Y
yangfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_DWCONVBNRELU_OP

#include "operators/kernel/dwconv_bn_relu_kernel.h"

namespace paddle_mobile {
Y
yangfei 已提交
20
namespace operators {
Y
yangfei 已提交
21

Y
yangfei 已提交
22 23 24
template <>
bool DWConvBNReluKernel<GPU_CL, float>::Init(
    FusionDWConvBNReluParam<GPU_CL> *param) {
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  PADDLE_MOBILE_ENFORCE(
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
          param->Paddings()[0] == param->Paddings()[1],
      "need equal");
  const framework::CLImage *mean = param->InputMean();
  const framework::CLImage *variance = param->InputVariance();
  const framework::CLImage *scale = param->InputScale();
  const framework::CLImage *bias = param->InputBias();
  const float epsilon = param->Epsilon();

  const int C = mean->numel();

  auto mean_ptr = mean->data<float>();
  auto variance_ptr = variance->data<float>();
  auto scale_ptr = scale->data<float>();
  auto bias_ptr = bias->data<float>();

  float inv_std_ptr[C];
  for (int i = 0; i < C; i++) {
    inv_std_ptr[i] =
        1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
  }
  float *new_scale_ptr = new float[C];
  float *new_bias_ptr = new float[C];

  for (int i = 0; i < C; i++) {
    new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
    new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
  }

  framework::CLImage *new_scale = new framework::CLImage();

  new_scale->SetTensorData(new_scale_ptr, variance->dims());
  new_scale->InitCLImage(this->cl_helper_.CLContext(),
                         cl_helper_.CLCommandQueue());

  framework::CLImage *new_bias = new framework::CLImage();

  new_bias->SetTensorData(new_bias_ptr, variance->dims());
  new_bias->InitCLImage(this->cl_helper_.CLContext(),
                        cl_helper_.CLCommandQueue());

  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);

  delete[](new_scale_ptr);
  delete[](new_bias_ptr);

  PADDLE_MOBILE_ENFORCE(
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
          param->Paddings()[0] == param->Paddings()[1],
      "need equal");

  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);

  param->SetOffset(offset);

  param->Filter()->InitDWImage(cl_helper_.CLContext(),
                               cl_helper_.CLCommandQueue());
  this->cl_helper_.AddKernel("depth_conv_3x3", "conv_bn_relu_kernel.cl");
  DLOG << " conv bn relu depth_conv_3x3";

Y
yangfei 已提交
88 89
  return true;
}
Y
yangfei 已提交
90

Y
yangfei 已提交
91 92
template <>
void DWConvBNReluKernel<GPU_CL, float>::Compute(
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    const FusionDWConvBNReluParam<GPU_CL> &param) {
  auto kernel = this->cl_helper_.KernelAt(0);
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  auto input = param.Input()->GetCLImage();
  auto filter = param.Filter()->GetCLImage();
  auto new_scale = param.NewScale()->GetCLImage();
  auto new_bias = param.NewBias()->GetCLImage();
  auto output = param.Output()->GetCLImage();
  int stride = param.Strides()[0];
  int offset = param.Offset();
  int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
                    param.Input()->Converter())
                    ->GetCBlock();
  int dilation = param.Dilations()[0];
  int input_width = param.Input()->dims()[3];
  int input_height = param.Input()->dims()[2];
  int output_width = param.Output()->dims()[3];
  int output_height = param.Output()->dims()[2];

  cl_int status;

  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &new_scale);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &new_bias);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 7, sizeof(cl_mem), &output);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 8, sizeof(int), &stride);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 9, sizeof(int), &offset);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 10, sizeof(int), &input_c);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 11, sizeof(int), &dilation);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 12, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 13, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 14, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 15, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);

  status = clEnqueueNDRangeKernel(
      this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
      default_work_size.data(), NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);
}
Y
yangfei 已提交
170
template class DWConvBNReluKernel<GPU_CL, float>;
Y
yangfei 已提交
171

Y
yangfei 已提交
172
}  // namespace operators
Y
yangfei 已提交
173 174 175
}  // namespace paddle_mobile

#endif