conv_image_compute.cc 62.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/kernels/opencl/conv_image_compute.h"
16

17
#include <iomanip>
Y
Yan Chunwei 已提交
18
#include <sstream>
19
#include "lite/backends/opencl/cl_image_converter.h"
20
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
21
#include "lite/core/op_registry.h"
22
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29
#include "lite/operators/op_params.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

30 31 32 33 34 35 36 37 38 39 40
/* image kernel*/
void ConvImageCompute::PrepareForRun() {
  const auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  float* filter_cpu = param.filter->mutable_data<float>();
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);

41
  filter_gpu_image_ = std::unique_ptr<Tensor>(new Tensor);
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  int bs = x_dims[0];
  int c_in = x_dims[1];
  int h_out = output_dims[2];
  int w_out = output_dims[3];
  int kernel_h = filter_dims[2];  // oihw
  int kernel_w = filter_dims[3];
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
  int pad_h = paddings[0];
  int pad_w = paddings[2];
  int groups = param.groups;
  bool relu_fused = param.fuse_relu;
  bool no_dilation = (dilations[0] == 1) && (dilations[1] == 1);
  bool zero_pad = (pad_h == 0) && (pad_w == 0);

  bool pad_equal =
      ((paddings[0] == paddings[1]) && (paddings[1] == paddings[2]) &&
       (paddings[2] == paddings[3]));
  bool stride_equal = stride_h == stride_w;
  bool dilation_equal = dilations[0] == dilations[1];

  VLOG(3) << "Is relu fused? / " << (relu_fused ? "Yes" : "No");
  VLOG(3) << "groups:" << groups << " stride_h:" << stride_h
          << " stride_w:" << stride_w << " pad_h:" << pad_h
          << " pad_w:" << pad_w << " kernel_h:" << kernel_h
          << " kernel_h:" << kernel_h;
  VLOG(3) << "x_dims:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2]
          << " " << x_dims[3];
72
  VLOG(3) << "dialtion:" << dilations[0] << " " << dilations[1];
73 74 75 76
  VLOG(3) << "output_dims:" << output_dims[0] << " " << output_dims[1] << " "
          << output_dims[2] << " " << output_dims[3];
  VLOG(3) << "filter_dims:" << filter_dims[0] << " " << filter_dims[1] << " "
          << filter_dims[2] << " " << filter_dims[3];
77 78 79 80 81 82 83
  VLOG(3) << "pad_equal:" << pad_equal;
  VLOG(3) << "stride_equal:" << stride_equal;
  VLOG(3) << "dilation_equal:" << dilation_equal;
  VLOG(3) << "padding :" << paddings[0] << " " << paddings[1] << " "
          << paddings[2] << " " << paddings[3];
  CHECK(pad_equal && stride_equal && dilation_equal);

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  // general gws..
  auto out_image_shape = InitImageDimInfoWith(output_dims);

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  default_c_blk_ = default_work_size[0];
  default_w_blk_ = default_work_size[1];
  default_nh_blk_ = default_work_size[2];
  c_blk_ = default_c_blk_;
  w_blk_ = default_w_blk_;
  nh_blk_ = default_nh_blk_;
  global_work_size_ = cl::NDRange{static_cast<size_t>(c_blk_),
                                  static_cast<size_t>(w_blk_),
                                  static_cast<size_t>(nh_blk_)};

103 104 105 106 107
  if (kernel_h == 1 && kernel_w == 1) {
    // conv2d_1x1
    if (param.x->dims()[1] % 4 == 0) {
      kernel_func_names_.push_back("conv2d_1x1_simple");
    } else {
108
      kernel_func_names_.push_back("conv2d_1x1_opt");
109
    }
110
    kernel_func_paths_.push_back("image/conv2d_1x1_opt_kernel.cl");
111 112 113

    CLImageConverterNWBlock converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
114 115
    std::vector<half_t> filter_image_v(filter_image_dims[0] *
                                       filter_image_dims[1] * 4);  // 4 : RGBA
116
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
117
    filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
118 119
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

120
    impl_ = &ConvImageCompute::Conv2d1x1opt;
121 122 123 124 125 126 127 128 129
    {
      // calc 1x1 gws
      w_blk_ = maptofactor(default_w_blk_, 4);
      c_blk_ = default_c_blk_;
      nh_blk_ = default_nh_blk_;
      global_work_size_ = cl::NDRange{static_cast<size_t>(c_blk_),
                                      static_cast<size_t>(w_blk_),
                                      static_cast<size_t>(nh_blk_)};
    }
130
#define DEPTH_CONV_USE_SPL
131
#ifdef DEPTH_CONV_USE_SPL
132 133 134 135 136 137
  } else if (filter_dims[1] == 1 && x_dims[1] == output_dims[1] &&
             kernel_h == 3 && kernel_w == 3 && groups > 1) {
    // depth_conv2d_3x3s1, depth_conv2d_3x3
    if (stride_h == 1 && dilations[0] == 1) {
      kernel_func_names_.push_back("depth_conv2d_3x3s1");
      impl_ = &ConvImageCompute::DepthwiseConv2d3x3s1;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
      {
        // depthwise spl gws s1
        int c_block = (output_dims[1] + 3) / 4;
        int w = output_dims[3];
        int nh = output_dims[0] * output_dims[2];
        int w_blk_size = 2;
        int w_blk = (w + w_blk_size - 1) / w_blk_size;

        c_blk_ = c_block;
        w_blk_ = w_blk;
        nh_blk_ = nh;
        global_work_size_ = cl::NDRange{static_cast<size_t>(c_blk_),
                                        static_cast<size_t>(w_blk_),
                                        static_cast<size_t>(nh_blk_)};
      }
153 154 155
    } else {
      kernel_func_names_.push_back("depth_conv2d_3x3");
      impl_ = &ConvImageCompute::DepthwiseConv2d3x3;
156 157 158 159 160 161 162 163 164 165 166 167 168 169
      {
        // depthwise spl gws
        int c_block = (output_dims[1] + 3) / 4;
        int w = output_dims[3];
        int nh = output_dims[0] * output_dims[2];

        c_blk_ = c_block;
        w_blk_ = w;
        nh_blk_ = nh;

        global_work_size_ = cl::NDRange{static_cast<size_t>(c_blk_),
                                        static_cast<size_t>(w_blk_),
                                        static_cast<size_t>(nh_blk_)};
      }
170 171 172
    }
    kernel_func_paths_.push_back("image/depthwise_conv2d_kernel.cl");

173
    CLImageConverterNWBlock converter;
174
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
175 176
    std::vector<half_t> filter_image_v(filter_image_dims[0] *
                                       filter_image_dims[1] * 4);  // 4 : RGBA
177
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
178
    filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
179
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());
180 181 182 183 184 185 186

#endif
  } else if (filter_dims[1] == 1 && x_dims[1] == output_dims[1]
#ifdef DEPTH_CONV_USE_SPL
             &&
             kernel_h != 3
#endif
187
#undef DEPTH_CONV_USE_SPL
188
             ) {
189 190 191 192
    // depth_conv2d
    kernel_func_names_.push_back("depth_conv2d");
    kernel_func_paths_.push_back("image/depthwise_conv2d_basic_kernel.cl");

193
    CLImageConverterNWBlock converter;
194
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
195 196
    std::vector<half_t> filter_image_v(filter_image_dims[0] *
                                       filter_image_dims[1] * 4);  // 4 : RGBA
197
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
198
    filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
199 200 201
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::DepthwiseConv2d;
202
  } else if (kernel_w == 3 && kernel_h == 3) {
203
    // conv2d_3x3
204 205
    kernel_func_names_.push_back(bs > 1 ? "conv2d_3x3_multi_batch"
                                        : "conv2d_3x3_opt");
206
    kernel_func_paths_.push_back("image/conv2d_3x3_opt_kernel.cl");
207 208 209

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
210 211
    std::vector<half_t> filter_image_v(filter_image_dims[0] *
                                       filter_image_dims[1] * 4);  // 4 : RGBA
212
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
213
    filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
214 215
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

216
    impl_ = &ConvImageCompute::Conv2d3x3opt;
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    {
      int w_blk_size = 5;
      int w_blk = (default_w_blk_ + w_blk_size - 1) / w_blk_size;

      int h_blk_size = 1;
      int h_blk = (default_nh_blk_ + h_blk_size - 1) / h_blk_size;

      c_blk_ = default_c_blk_;
      w_blk_ = w_blk;
      nh_blk_ = h_blk;

      global_work_size_ = cl::NDRange{static_cast<size_t>(c_blk_),
                                      static_cast<size_t>(w_blk_),
                                      static_cast<size_t>(nh_blk_)};
    }

233
  } else if (kernel_h == 5 && kernel_w == 5) {
234 235
#define CONV_5x5_OPT
#ifndef CONV_5x5_OPT
236 237 238 239 240 241
    // conv2d_5x5
    kernel_func_names_.push_back("conv2d_5x5");
    kernel_func_paths_.push_back("image/conv2d_5x5_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
242 243
    std::vector<half_t> filter_image_v(filter_image_dims[0] *
                                       filter_image_dims[1] * 4);  // 4 : RGBA
244
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
245
    filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
246 247 248
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::Conv2d5x5;
249 250
#else
    // conv2d_5x5_opt
251 252 253

    kernel_func_names_.push_back(bs > 1 ? "conv2d_5x5_multi_batch"
                                        : "conv2d_5x5_opt");
254 255 256 257 258 259 260
    kernel_func_paths_.push_back("image/conv2d_5x5_opt_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
    std::vector<half_t> filter_image_v(filter_image_dims[0] *
                                       filter_image_dims[1] * 4);  // 4 : RGBA
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
261
    filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
262 263 264
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::Conv2d5x5opt;
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    {
      int w_blk_size = 5;
      int w_blk = (default_w_blk_ + w_blk_size - 1) / w_blk_size;

      int h_blk_size = 1;
      int h_blk = (default_nh_blk_ + h_blk_size - 1) / h_blk_size;

      c_blk_ = default_c_blk_;
      w_blk_ = w_blk;
      nh_blk_ = h_blk;

      global_work_size_ = cl::NDRange{static_cast<size_t>(c_blk_),
                                      static_cast<size_t>(w_blk_),
                                      static_cast<size_t>(nh_blk_)};
    }
280 281
#endif
#undef CONV_5x5_OPT
282
  } else if (kernel_h == 7 && kernel_w == 7) {
283 284
#define CONV_7x7_OPT
#ifndef CONV_7x7_OPT
285 286 287 288 289 290
    // conv2d_7x7
    kernel_func_names_.push_back("conv2d_7x7");
    kernel_func_paths_.push_back("image/conv2d_7x7_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
291 292
    std::vector<half_t> filter_image_v(filter_image_dims[0] *
                                       filter_image_dims[1] * 4);  // 4 : RGBA
293
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
294
    this->filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
295 296 297
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::Conv2d7x7;
298 299 300

#else
    // conv2d_7x7
301 302
    kernel_func_names_.push_back(bs > 1 ? "conv2d_7x7_multi_batch"
                                        : "conv2d_7x7_opt");
303 304 305 306 307 308 309
    kernel_func_paths_.push_back("image/conv2d_7x7_opt_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
    std::vector<half_t> filter_image_v(filter_image_dims[0] *
                                       filter_image_dims[1] * 4);  // 4 : RGBA
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
310
    this->filter_gpu_image_->mutable_data<half_t, cl::Image2D>(
311 312 313
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::Conv2d7x7opt;
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    {
      int w_blk_size = 5;
      int w_blk = (default_w_blk_ + w_blk_size - 1) / w_blk_size;

      int h_blk_size = 1;
      int h_blk = (default_nh_blk_ + h_blk_size - 1) / h_blk_size;

      c_blk_ = default_c_blk_;
      w_blk_ = w_blk;
      nh_blk_ = h_blk;

      global_work_size_ = cl::NDRange{static_cast<size_t>(c_blk_),
                                      static_cast<size_t>(w_blk_),
                                      static_cast<size_t>(nh_blk_)};
    }
329 330 331
#endif
#undef CONV_7x7_OPT

332 333 334
  } else {
    LOG(FATAL) << "conv image compute not support this condition yet! ";
  }
335 336
  VLOG(1) << "kernel_func_names_[0]:" << kernel_func_names_[0]
          << " kernel_func_paths_[0]:" << kernel_func_paths_[0];
337

338
  std::string build_options_single(" -DCL_DTYPE_half");
339 340 341 342 343 344 345
  // relu options
  if (relu_fused) {
    build_options_single += " -DRELU";
  } else if (param.activation_param.active_type ==
             lite_api::ActivationType::kRelu6) {
    build_options_single += " -DRELU6";
  } else {
346
    // do nothing, may add more activation fuse
347 348 349 350 351 352
  }
  // bias options
  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  if (has_bias) {
353
    bias_gpu_image_ = std::unique_ptr<Tensor>(new Tensor);
354 355 356 357 358 359 360
    build_options_single +=
        is_element_wise_bias ? " -DBIASE_ELE" : " -DBIASE_CH";

    // convert cpu buffer bias --> gpu image
    CLImageConverterFolder bias_converter;
    const DDim& bias_image_dims =
        bias_converter.InitImageDimInfoWith(param.bias->dims());
361 362
    std::vector<half_t> bias_image_v(bias_image_dims[0] * bias_image_dims[1] *
                                     4);
363 364 365
    float* bias_cpu_data = param.bias->mutable_data<float>();
    bias_converter.NCHWToImage(
        bias_cpu_data, bias_image_v.data(), param.bias->dims());
366
    this->bias_gpu_image_->mutable_data<half_t, cl::Image2D>(
367 368 369 370 371 372 373
        bias_image_dims[0], bias_image_dims[1], bias_image_v.data());
    // convert cpu buffer bias --> gpu image --- end ----
  }

  build_options_.push_back(build_options_single);

  for (size_t i = 0; i < kernel_func_names_.size(); i++) {
374 375 376 377
    context.cl_context()->AddKernel(kernel_func_names_[i],
                                    kernel_func_paths_[i],
                                    build_options_[i],
                                    time_stamp_);
378
  }
379 380 381 382 383

  VLOG(4) << "global_work_size_[3D]: {" << global_work_size_[0] << ","
          << global_work_size_[1] << "," << global_work_size_[2] << "}";

  std::stringstream kernel_key;
384
  kernel_key << kernel_func_names_[0] << build_options_[0] << time_stamp_;
385 386 387 388 389 390 391 392 393 394
  kernel_ = context.cl_context()->GetKernel(kernel_key.str());
  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();
  size_t max_work_group_size = 0;
  kernel_.getWorkGroupInfo<size_t>(CLRuntime::Global()->device(),
                                   CL_KERNEL_WORK_GROUP_SIZE,
                                   &max_work_group_size);

  VLOG(4) << "max_work_group_size: " << max_work_group_size;

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
  if (max_work_group_size > 0 && use_lws_) {
    double min_turn_time = DBL_MAX;
    cl::NDRange best_local_work_size = context.cl_context()->LocalWorkSize(
        global_work_size_, max_work_group_size);
    cl::NDRange last_local_work_size = cl::NDRange{
        static_cast<size_t>(0), static_cast<size_t>(0), static_cast<size_t>(0)};
    if (use_turn_) {
      for (size_t i = 1; i < 15; i++) {
        if (kernel_h == 1 && kernel_w == 1) {
          // todo use diff logics
          local_work_size_ = context.cl_context()->LocalWorkSizeTurn(
              global_work_size_, max_work_group_size, i);
        } else {
          local_work_size_ = context.cl_context()->LocalWorkSizeTurn(
              global_work_size_, max_work_group_size, i);
        }
        if (last_local_work_size[0] == local_work_size_[0] &&
            last_local_work_size[1] == local_work_size_[1] &&
            last_local_work_size[2] == local_work_size_[2]) {
          // skiped turned lws
          continue;
        }
        auto turn_time = this->Turn(5);
        if (min_turn_time > turn_time) {
          min_turn_time = turn_time;
          best_local_work_size = local_work_size_;
        }
        last_local_work_size = local_work_size_;
      }
    }
    local_work_size_ = best_local_work_size;
426 427 428
    VLOG(4) << "local_work_size_[3D]: {" << local_work_size_[0] << ","
            << local_work_size_[1] << "," << local_work_size_[2] << "}";
  }
429 430
}

431
void ConvImageCompute::Conv2d1x1opt(bool is_turn) {
432 433
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
434 435 436 437
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
438
  auto* input_image = param.x->data<half_t, cl::Image2D>();
439
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
440 441 442 443 444 445 446 447
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
448
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
449 450 451 452 453 454 455 456 457 458 459 460 461 462
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

463 464 465 466 467
#ifndef LITE_SHUTDOWN_LOG
  //  VLOG(4) << "out_image: " << out_image;
  VLOG(4) << "global_work_size_[3D]: {" << global_work_size_[0] << ","
          << global_work_size_[1] << "," << global_work_size_[2] << "}";
#endif
468
#ifndef LITE_SHUTDOWN_LOG
469 470 471 472 473
  VLOG(4) << "============ conv2d_1x1 params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
474
  //  VLOG(4) << "input_image: " << input_image;
475
  VLOG(4) << "filter_dims: " << filter_dims;
476
  //  VLOG(4) << "filter_image: " << filter_image;
477 478 479 480 481 482 483 484 485 486
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
487 488 489
// VLOG(4) << "default work size{c_block, w, nh}: "
//         << "{" << c_block << ", " << w << ", " << nh << ""
//         << "}";
490
#endif
491 492 493 494 495 496 497 498 499 500 501 502
  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  // handle bias  use buffer for channel wise , use image for element wise
  const cl::Buffer* bias_buf = nullptr;
  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
503
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
504 505
  }

506
  auto kernel = kernel_;
507 508
  cl_int status;
  int arg_idx = 0;
509
  status = kernel.setArg(arg_idx, c_blk_);
510
  CL_CHECK_FATAL(status);
511
  status = kernel.setArg(++arg_idx, w_blk_);
512
  CL_CHECK_FATAL(status);
513
  status = kernel.setArg(++arg_idx, nh_blk_);
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);
544
  status = kernel.setArg(++arg_idx, default_w_blk_);
545 546
  CL_CHECK_FATAL(status);

547
  event_ = std::shared_ptr<cl::Event>(new cl::Event);
548 549 550
  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
551 552
      global_work_size_,
      local_work_size_,
553 554 555 556
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
557 558
  if (is_turn) {
    event_->wait();
559
  }
560
}
561

562
void ConvImageCompute::Conv2d3x3(bool is_turn) {
563 564
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
565 566 567 568 569
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;

570
  auto* input_image = param.x->data<half_t, cl::Image2D>();
571
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
572 573 574 575 576 577 578 579 580 581 582 583 584
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int input_channel = input_dims[1];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int output_channel = output_dims[1];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  int filter_channel = filter_dims[1];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
585
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

  // re-calc group
  int new_groups{param.groups};
  if (filter_dims[0] == output_dims[1] && filter_dims[1] == input_dims[1]) {
    new_groups = 1;
  } else if (!(filter_dims[0] == input_dims[1] && filter_dims[1] == 1)) {
    new_groups = input_channel / filter_channel;
  }
607 608 609 610 611 612 613 614
/* TODO(ysh329): mobile has no case below
   else {
    LOG(FATAL) << "Not support conv3x3 case with"
               << " input_dims:" << input_dims << " output_dims:" <<
  output_dims
               << " filter_dims:" << filter_dims;
  }
*/
615

616
#ifndef LITE_SHUTDOWN_LOG
617 618 619 620 621
  VLOG(4) << "============ conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
622
  //  VLOG(4) << "input_image: " << input_image;
623 624
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
625
  //  VLOG(4) << "filter_image: " << filter_image;
626 627 628 629 630 631 632 633 634 635 636 637
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  VLOG(4) << "param.groups(groups):" << param.groups;
  VLOG(4) << "new_groups:" << new_groups;
638 639 640
// VLOG(4) << "default work size{c_block, w, nh}: "
//         << "{" << c_block << ", " << w << ", " << nh << ""
//         << "}";
641
#endif
642 643 644 645 646 647 648 649 650 651 652

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
653
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
654
  }
655
  auto kernel = kernel_;
656 657 658

  cl_int status;
  int arg_idx = 0;
659
  status = kernel.setArg(arg_idx, c_blk_);
660
  CL_CHECK_FATAL(status);
661
  status = kernel.setArg(++arg_idx, w_blk_);
662
  CL_CHECK_FATAL(status);
663
  status = kernel.setArg(++arg_idx, nh_blk_);
664 665 666 667 668 669
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
670
#ifndef LITE_SHUTDOWN_LOG
671
    VLOG(4) << "set bias_image: ";
672
#endif
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_channel);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_channel);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, new_groups);
  CL_CHECK_FATAL(status);

707
#ifndef LITE_SHUTDOWN_LOG
708
  //  VLOG(4) << "out_image: " << out_image;
709 710
  VLOG(4) << "global_work_size_[3D]: {" << global_work_size_[0] << ","
          << global_work_size_[1] << "," << global_work_size_[2] << "}";
711
#endif
712

713
  event_ = std::shared_ptr<cl::Event>(new cl::Event);
714 715 716
  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
717
      global_work_size_,
718 719 720 721 722
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
723 724 725 726

  if (is_turn) {
    event_->wait();
  }
727 728
}

729
void ConvImageCompute::Conv2d3x3opt(bool is_turn) {
730 731
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
732 733 734 735 736 737 738
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto dilations = *param.dilations;

  auto* input_image = param.x->data<half_t, cl::Image2D>();
739
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
740 741 742 743 744 745 746 747 748
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int input_channel = input_dims[1];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int output_channel = output_dims[1];
749 750
  CHECK_EQ(input_dims[0], output_dims[0]);
  int batch = input_dims[0];
751 752 753 754 755 756 757 758
  auto out_image_shape = InitImageDimInfoWith(output_dims);
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();

759
#ifndef LITE_SHUTDOWN_LOG
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
  VLOG(4) << "============ conv2d params ============";
  // VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
  //         << input_image_shape["height"];
  //  VLOG(4) << "input_image: " << input_image;
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
  //  VLOG(4) << "filter_image: " << filter_image;
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
776
#endif
777 778 779 780 781 782 783 784 785 786 787

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
788
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
789 790
  }

791
  auto kernel = kernel_;
792 793 794

  cl_int status;
  int arg_idx = 0;
795
  status = kernel.setArg(arg_idx, c_blk_);
796
  CL_CHECK_FATAL(status);
797
  status = kernel.setArg(++arg_idx, w_blk_);
798
  CL_CHECK_FATAL(status);
799
  status = kernel.setArg(++arg_idx, nh_blk_);
800 801 802 803 804 805
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
806
#ifndef LITE_SHUTDOWN_LOG
807
    VLOG(4) << "set bias_image: ";
808
#endif
809 810 811 812 813 814 815 816 817 818 819 820 821
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, paddings[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
822 823
  status = kernel.setArg(++arg_idx, batch);
  CL_CHECK_FATAL(status);
824 825 826 827 828 829 830 831 832 833 834
  status = kernel.setArg(++arg_idx, input_channel);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

835
#ifndef LITE_SHUTDOWN_LOG
836
  //  VLOG(4) << "out_image: " << out_image;
837 838
  VLOG(4) << "global_work_size_[3D]: {" << global_work_size_[0] << ","
          << global_work_size_[1] << "," << global_work_size_[2] << "}";
839
#endif
840

841
  event_ = std::shared_ptr<cl::Event>(new cl::Event);
842 843 844
  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
845 846
      global_work_size_,
      local_work_size_,
847 848 849 850
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
851 852 853
  if (is_turn) {
    event_->wait();
  }
854 855
}

856
void ConvImageCompute::Conv2d5x5(bool is_turn) {
857 858
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
859 860 861 862
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
863
  auto* input_image = param.x->data<half_t, cl::Image2D>();
864
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
865 866 867 868 869 870 871 872 873 874
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
875
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
876 877 878 879 880 881 882 883 884 885 886 887 888 889
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

890
#ifndef LITE_SHUTDOWN_LOG
891 892 893 894 895
  VLOG(4) << "============ conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
896
  //  VLOG(4) << "input_image: " << input_image;
897 898
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
899
  //  VLOG(4) << "filter_image: " << filter_image;
900 901 902 903 904 905 906 907 908 909
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
910
#endif
911 912 913 914 915 916 917 918 919 920 921

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
922
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
923 924
  }

925
  auto kernel = kernel_;
926 927 928

  cl_int status;
  int arg_idx = 0;
929
  status = kernel.setArg(arg_idx, c_blk_);
930
  CL_CHECK_FATAL(status);
931
  status = kernel.setArg(++arg_idx, w_blk_);
932
  CL_CHECK_FATAL(status);
933
  status = kernel.setArg(++arg_idx, nh_blk_);
934 935 936 937 938 939
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
940
#ifndef LITE_SHUTDOWN_LOG
941
    VLOG(4) << "set bias_image: ";
942
#endif
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

967
#ifndef LITE_SHUTDOWN_LOG
968
  //  VLOG(4) << "out_image: " << out_image;
969 970
  VLOG(4) << "global_work_size_[3D]: {" << global_work_size_[0] << ","
          << global_work_size_[1] << "," << global_work_size_[2] << "}";
971
#endif
972

973
  event_ = std::shared_ptr<cl::Event>(new cl::Event);
974 975 976
  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
977
      global_work_size_,
978 979 980 981 982
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
983 984 985
  if (is_turn) {
    event_->wait();
  }
986
}
987

988
void ConvImageCompute::Conv2d5x5opt(bool is_turn) {
989 990
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
991 992 993 994 995 996 997
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto dilations = *param.dilations;

  auto* input_image = param.x->data<half_t, cl::Image2D>();
998
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int input_channel = input_dims[1];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int output_channel = output_dims[1];
  CHECK_EQ(input_dims[0], output_dims[0]);
  int batch = input_dims[0];

  auto out_image_shape = InitImageDimInfoWith(output_dims);
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();

// default_work_size[2] = h_blk;
#ifndef LITE_SHUTDOWN_LOG
  VLOG(4) << "============ conv2d params ============";
  // VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
  //         << input_image_shape["height"];
  //  VLOG(4) << "input_image: " << input_image;
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
  //  VLOG(4) << "filter_image: " << filter_image;
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
#endif
  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
1048
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
1049 1050
  }

1051
  auto kernel = kernel_;
1052 1053
  cl_int status;
  int arg_idx = 0;
1054
  status = kernel.setArg(arg_idx, c_blk_);
1055
  CL_CHECK_FATAL(status);
1056
  status = kernel.setArg(++arg_idx, w_blk_);
1057
  CL_CHECK_FATAL(status);
1058
  status = kernel.setArg(++arg_idx, nh_blk_);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, paddings[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, batch);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_channel);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

1091
  //  VLOG(4) << "out_image: " << out_image;
1092

1093
  event_ = std::shared_ptr<cl::Event>(new cl::Event);
1094 1095 1096
  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
1097 1098
      global_work_size_,
      local_work_size_,
1099 1100 1101 1102
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
1103 1104 1105
  if (is_turn) {
    event_->wait();
  }
1106 1107
}

1108
void ConvImageCompute::Conv2d7x7(bool is_turn) {
1109 1110
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
1111 1112 1113 1114
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
1115
  auto* input_image = param.x->data<half_t, cl::Image2D>();
1116
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
1127
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

1142
#ifndef LITE_SHUTDOWN_LOG
1143 1144 1145 1146 1147
  VLOG(4) << "============ conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
1148
  //  VLOG(4) << "input_image: " << input_image;
1149 1150
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
1151
  //  VLOG(4) << "filter_image: " << filter_image;
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
1162
#endif
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
1174
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
1175 1176
  }

1177
  auto kernel = kernel_;
1178 1179 1180

  cl_int status;
  int arg_idx = 0;
1181
  status = kernel.setArg(arg_idx, c_blk_);
1182
  CL_CHECK_FATAL(status);
1183
  status = kernel.setArg(++arg_idx, w_blk_);
1184
  CL_CHECK_FATAL(status);
1185
  status = kernel.setArg(++arg_idx, nh_blk_);
1186 1187 1188 1189 1190 1191
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
1192
#ifndef LITE_SHUTDOWN_LOG
1193
    VLOG(4) << "set bias_image: ";
1194
#endif
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

1219
#ifndef LITE_SHUTDOWN_LOG
1220
  //  VLOG(4) << "out_image: " << out_image;
1221 1222
  VLOG(4) << "global_work_size_[3D]: {" << global_work_size_[0] << ","
          << global_work_size_[1] << "," << global_work_size_[2] << "}";
1223
#endif
1224

1225
  event_ = std::shared_ptr<cl::Event>(new cl::Event);
1226 1227 1228
  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
1229
      global_work_size_,
1230 1231 1232 1233 1234
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
1235 1236 1237 1238

  if (is_turn) {
    event_->wait();
  }
1239
}
1240
void ConvImageCompute::Conv2d7x7opt(bool is_turn) {
1241 1242
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
1243 1244 1245 1246 1247 1248 1249
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto dilations = *param.dilations;

  auto* input_image = param.x->data<half_t, cl::Image2D>();
1250
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int input_channel = input_dims[1];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int output_channel = output_dims[1];
  CHECK_EQ(input_dims[0], output_dims[0]);
  int batch = input_dims[0];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();

#ifndef LITE_SHUTDOWN_LOG
  VLOG(4) << "============ conv2d 7x7 params ============";
  // VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
  //         << input_image_shape["height"];
  //  VLOG(4) << "input_image: " << input_image;
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
  //  VLOG(4) << "filter_image: " << filter_image;
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
#endif
  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
1298
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
1299 1300
  }

1301
  auto kernel = kernel_;
1302

1303 1304
  cl_int status;
  int arg_idx = 0;
1305
  status = kernel.setArg(arg_idx, c_blk_);
1306
  CL_CHECK_FATAL(status);
1307
  status = kernel.setArg(++arg_idx, w_blk_);
1308
  CL_CHECK_FATAL(status);
1309
  status = kernel.setArg(++arg_idx, nh_blk_);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, paddings[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, batch);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_channel);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

1342
  event_ = std::shared_ptr<cl::Event>(new cl::Event);
1343 1344 1345
  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
1346 1347
      global_work_size_,
      local_work_size_,
1348 1349 1350 1351
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
1352 1353 1354 1355

  if (is_turn) {
    event_->wait();
  }
1356
}
1357
void ConvImageCompute::DepthwiseConv2d3x3s1(bool is_turn) {
1358 1359
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
1360 1361 1362 1363 1364 1365 1366 1367
  const auto& param = *param_.get_mutable<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto dilations = *param.dilations;

1368
  auto* input_img = param.x->data<half_t, cl::Image2D>();
1369
  auto* filter_img = filter_gpu_image_->data<half_t, cl::Image2D>();
1370 1371 1372

  const cl::Image2D* bias_img = nullptr;
  if (param.bias) {
1373
    bias_img = bias_gpu_image_->data<half_t, cl::Image2D>();
1374 1375 1376 1377
  }

  auto image_shape = InitImageDimInfoWith(output_dims);

1378
  auto* output_img = param.output->mutable_data<half_t, cl::Image2D>(
1379 1380
      image_shape["width"], image_shape["height"]);

1381
  auto kernel = kernel_;
1382 1383 1384

  cl_int status;
  int arg_idx = 0;
1385
  status = kernel.setArg(arg_idx, c_blk_);
1386
  CL_CHECK_FATAL(status);
1387
  status = kernel.setArg(++arg_idx, w_blk_);
1388
  CL_CHECK_FATAL(status);
1389
  status = kernel.setArg(++arg_idx, nh_blk_);
1390 1391 1392 1393 1394
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_img);
  CL_CHECK_FATAL(status);
1395 1396 1397 1398 1399 1400

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
1401
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
1402
#ifndef LITE_SHUTDOWN_LOG
1403
    VLOG(4) << "set bias_image: ";
1404
#endif
1405 1406 1407
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
  status = kernel.setArg(++arg_idx, *output_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(dilations[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[1]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
  CL_CHECK_FATAL(status);

1427
  event_ = std::shared_ptr<cl::Event>(new cl::Event);
1428 1429 1430
  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
1431 1432
      global_work_size_,
      local_work_size_,
1433 1434 1435 1436
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(output_img, event_);
1437 1438 1439 1440

  if (is_turn) {
    event_->wait();
  }
1441 1442
}

1443
void ConvImageCompute::DepthwiseConv2d3x3(bool is_turn) {
1444 1445
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
  const auto& param = *param_.get_mutable<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto dilations = *param.dilations;
  int offset = filter_dims[2] / 2 - paddings[0];
  int input_c_block = (x_dims[1] + 3) / 4;

1456
  auto* input_img = param.x->data<half_t, cl::Image2D>();
1457
  auto* filter_img = filter_gpu_image_->data<half_t, cl::Image2D>();
1458 1459 1460

  const cl::Image2D* bias_img = nullptr;
  if (param.bias) {
1461
    bias_img = bias_gpu_image_->data<half_t, cl::Image2D>();
1462 1463 1464 1465
  }

  auto image_shape = InitImageDimInfoWith(output_dims);

1466
  auto* output_img = param.output->mutable_data<half_t, cl::Image2D>(
1467 1468
      image_shape["width"], image_shape["height"]);

1469
  auto kernel = kernel_;
1470

1471
#ifndef LITE_SHUTDOWN_LOG
1472 1473 1474 1475 1476 1477 1478 1479 1480
  VLOG(4) << "setArg";
  VLOG(4) << "strides = " << strides[0];
  VLOG(4) << "offset = " << offset;
  VLOG(4) << "dilations = " << dilations[0];
  VLOG(4) << "input_c_block = " << input_c_block;
  VLOG(4) << "x_dims[3] = " << x_dims[3];
  VLOG(4) << "x_dims[2] = " << x_dims[2];
  VLOG(4) << "output_dims[3] = " << output_dims[3];
  VLOG(4) << "output_dims[2] = " << output_dims[2];
1481
#endif
1482 1483 1484

  cl_int status;
  int arg_idx = 0;
1485
  status = kernel.setArg(arg_idx, c_blk_);
1486
  CL_CHECK_FATAL(status);
1487
  status = kernel.setArg(++arg_idx, w_blk_);
1488
  CL_CHECK_FATAL(status);
1489
  status = kernel.setArg(++arg_idx, nh_blk_);
1490 1491 1492 1493 1494
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_img);
  CL_CHECK_FATAL(status);
1495 1496 1497 1498 1499
  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
1500
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
1501
#ifndef LITE_SHUTDOWN_LOG
1502
    VLOG(4) << "set bias_image: ";
1503
#endif
1504 1505 1506
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
  status = kernel.setArg(++arg_idx, *output_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(offset));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(dilations[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(input_c_block));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
  CL_CHECK_FATAL(status);

1526
  event_ = std::shared_ptr<cl::Event>(new cl::Event);
1527 1528 1529
  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
1530
      global_work_size_,
1531 1532 1533 1534 1535
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(output_img, event_);
1536 1537 1538 1539

  if (is_turn) {
    event_->wait();
  }
1540 1541
}

1542
void ConvImageCompute::DepthwiseConv2d(bool is_turn) {
1543 1544
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
1545 1546 1547 1548
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
1549
  auto* input_image = param.x->data<half_t, cl::Image2D>();
1550
  auto* filter_image = filter_gpu_image_->data<half_t, cl::Image2D>();
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
1561
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

1576
#ifndef LITE_SHUTDOWN_LOG
1577 1578 1579 1580 1581
  VLOG(4) << "============ depthwise conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
1582
  //  VLOG(4) << "input_image: " << input_image;
1583
  VLOG(4) << "filter_dims: " << filter_dims;
1584
  //  VLOG(4) << "filter_image: " << filter_image;
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
1595
#endif
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  // handle bias  use buffer for channel wise , use image for element wise
  const cl::Buffer* bias_buf = nullptr;
  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
1609
    bias_image = bias_gpu_image_->data<half_t, cl::Image2D>();
1610 1611
  }

1612
  auto kernel = kernel_;
1613 1614 1615

  cl_int status;
  int arg_idx = 0;
1616
  status = kernel.setArg(arg_idx, c_blk_);
1617
  CL_CHECK_FATAL(status);
1618
  status = kernel.setArg(++arg_idx, w_blk_);
1619
  CL_CHECK_FATAL(status);
1620
  status = kernel.setArg(++arg_idx, nh_blk_);
1621 1622 1623 1624 1625 1626
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
1627
#ifndef LITE_SHUTDOWN_LOG
1628
    VLOG(4) << "set bias_image: ";
1629
#endif
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_height);
  CL_CHECK_FATAL(status);

1658
#ifndef LITE_SHUTDOWN_LOG
1659
  //  VLOG(4) << "out_image: " << out_image;
1660 1661
  VLOG(4) << "global_work_size_[3D]: {" << global_work_size_[0] << ","
          << global_work_size_[1] << "," << global_work_size_[2] << "}";
1662
#endif
1663

1664
  event_ = std::shared_ptr<cl::Event>(new cl::Event);
1665 1666 1667
  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
1668
      global_work_size_,
1669 1670 1671 1672 1673 1674 1675
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
void ConvImageCompute::Run() { (this->*impl_)(false); }

double ConvImageCompute::Turn(int times) {
  auto GetCurrentUS = []() -> double {
    struct timeval time;
    gettimeofday(&time, NULL);
    return 1e+6 * time.tv_sec + time.tv_usec;
  };
  auto start = GetCurrentUS();
  for (size_t i = 0; i < times; i++) {
    (this->*impl_)(true);
  }
  auto time_diff = (GetCurrentUS() - start) / times;
  return time_diff;
}

Y
Yan Chunwei 已提交
1692 1693 1694 1695 1696 1697 1698
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(conv2d,
                     kOpenCL,
1699
                     kFP16,
1700 1701 1702 1703 1704
                     kImageDefault,
                     paddle::lite::kernels::opencl::ConvImageCompute,
                     image2d)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
1705
                                      PRECISION(kFP16),
1706 1707 1708 1709 1710
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
1711
                                       PRECISION(kFP16),
1712
                                       DATALAYOUT(kImageDefault))})
Y
Yan Chunwei 已提交
1713
    .Finalize();
1714

1715
REGISTER_LITE_KERNEL(depthwise_conv2d,
1716
                     kOpenCL,
1717
                     kFP16,
1718 1719 1720 1721 1722
                     kImageDefault,
                     paddle::lite::kernels::opencl::ConvImageCompute,
                     image2d)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
1723
                                      PRECISION(kFP16),
1724 1725 1726 1727 1728
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
1729
                                       PRECISION(kFP16),
1730 1731
                                       DATALAYOUT(kImageDefault))})
    .Finalize();