generate_program_pass.cc 2.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/core/mir/generate_program_pass.h"
#include <memory>
17
#include <string>
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25 26 27 28
#include <utility>
#include <vector>
#include "lite/core/mir/graph_visualize_pass.h"
#include "lite/core/mir/pass_registry.h"

namespace paddle {
namespace lite {
namespace mir {

void GenerateProgramPass::Apply(const std::unique_ptr<SSAGraph>& graph) {
  VLOG(4) << "final program \n" << Visualize(graph.get());
29 30 31 32 33 34 35 36 37 38 39 40 41 42
  std::vector<Node*> nodes_in_order;
#ifdef LITE_WITH_CUDA
  const std::string depend_pass = "multi_stream_analysis_pass";
  const std::string attr_name = "nodes_in_order";
  mir::Pass* pass = mir::PassManager::Global().LookUp(depend_pass);
  if (pass->HasAttr(attr_name)) {
    nodes_in_order = pass->GetAttr<std::vector<Node*>>(attr_name);
  }
#endif
  if (nodes_in_order.empty()) {
    nodes_in_order = graph->StmtTopologicalOrder();
  }

  for (auto& item : nodes_in_order) {
Y
Yan Chunwei 已提交
43 44 45
    if (item->IsStmt()) {
      auto& stmt = item->AsStmt();
      VLOG(4) << stmt;
46 47 48 49 50 51 52 53 54 55 56 57 58 59
#ifdef LITE_WITH_CUDA
      if (stmt.kernels().front()->target() == TargetType::kCUDA) {
        stmt.kernels()
            .front()
            ->mutable_context()
            ->As<CUDAContext>()
            .SetNeedSync(stmt.need_sync_);
        stmt.kernels()
            .front()
            ->mutable_context()
            ->As<CUDAContext>()
            .SetSyncStreams(stmt.sync_streams_);
      }
#endif
Y
Yan Chunwei 已提交
60 61 62 63 64 65 66 67 68
      insts_.emplace_back(stmt.op(), std::move(stmt.kernels().front()));
    }
  }
}

}  // namespace mir
}  // namespace lite
}  // namespace paddle

69
REGISTER_MIR_PASS(generate_program_pass, paddle::lite::mir::GenerateProgramPass)
70
    .BindTargets({TARGET(kAny)});