elementwise_mul_kernel.cpp 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef ELEMENTWISEMUL_OP

#include "operators/kernel/elementwise_mul_kernel.h"
18 19
#include <framework/cl/cl_half.h>
#include <iostream>
20 21 22 23 24 25 26 27 28 29 30
#include "framework/cl/cl_image.h"

namespace paddle_mobile {
namespace operators {

template <>
bool ElementwiseMulKernel<GPU_CL, float>::Init(
    ElementwiseMulParam<GPU_CL> *param) {
  framework::CLImage *bias = reinterpret_cast<framework::CLImage *>(
      const_cast<framework::CLImage *>(param->InputY()));
  if (bias->dims() == param->InputX()->dims()) {
31
    DLOG << "init element wise mul";
32 33
    this->cl_helper_.AddKernel("elementwise_mul", "elementwise_mul_kernel.cl");
  } else {
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    const int bias_dim_size = bias->dims().size();
    if (bias_dim_size == 1) {
      DLOG << "init channel_mul";
      this->cl_helper_.AddKernel("channel_mul", "elementwise_mul_kernel.cl");
    } else if (bias_dim_size == 2) {
      // etc. input  1 72 28 28
      // filter 1 72
      DLOG << "init channel_mul_d2";
      this->cl_helper_.AddKernel("channel_mul_d2", "elementwise_mul_kernel.cl");
    } else if (bias_dim_size == 4) {
      DLOG << "init channel_mul_d4";
      this->cl_helper_.AddKernel("channel_mul_d4", "elementwise_mul_kernel.cl");
    } else {
      PADDLE_MOBILE_ENFORCE(false,
                            "element mul not supported this situation yet");
    }
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  }
  return true;
}
template <>
void ElementwiseMulKernel<GPU_CL, float>::Compute(
    const ElementwiseMulParam<GPU_CL> &param) {
  auto input = param.InputX();
  auto bias = param.InputY();
  auto output = param.Out();
  cl_int status;
  auto kernel = this->cl_helper_.KernelAt(0);
  if (bias->dims() == input->dims()) {
    cl_mem input_image = input->GetCLImage();
    cl_mem bias_image = bias->GetCLImage();
    cl_mem output_image = output->GetCLImage();
    status = clSetKernelArg(kernel, 0, sizeof(cl_mem),
                            reinterpret_cast<void *>(&input_image));
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 1, sizeof(cl_mem),
                            reinterpret_cast<void *>(&bias_image));
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 2, sizeof(cl_mem),
                            reinterpret_cast<void *>(&output_image));
    CL_CHECK_ERRORS(status);
    auto width = input->ImageWidth();
    auto height = input->ImageHeight();
    size_t global_work_size[2] = {width, height};
    status =
        clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 2,
                               NULL, global_work_size, NULL, 0, NULL, NULL);
    CL_CHECK_ERRORS(status);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  } else {
    const int bias_dim_size = bias->dims().size();
    if (bias_dim_size == 1) {
      DLOG << "channel mul";
      cl_mem input_image = input->GetCLImage();
      cl_mem bias_image = bias->GetCLImage();
      cl_mem output_image = output->GetCLImage();
      int tensor_w = input->dims()[input->dims().size() - 1];
      status = clSetKernelArg(kernel, 0, sizeof(cl_mem),
                              reinterpret_cast<void *>(&input_image));
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel, 1, sizeof(cl_mem),
                              reinterpret_cast<void *>(&bias_image));
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel, 2, sizeof(cl_mem),
                              reinterpret_cast<void *>(&output_image));
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel, 3, sizeof(cl_int),
                              reinterpret_cast<void *>(&tensor_w));
      CL_CHECK_ERRORS(status);
      auto width = input->ImageWidth();
      auto height = input->ImageHeight();
      size_t global_work_size[2] = {width, height};
      status =
          clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 2,
                                 NULL, global_work_size, NULL, 0, NULL, NULL);
      CL_CHECK_ERRORS(status);
    } else if (bias_dim_size == 2) {
      DLOG << "channel mul d2";
110

111 112 113 114 115
      // etc. input  1 72 28 28
      // filter 1 72   -->  1 1 1 72
      DLOG << "input->ImageDims():  " << input->ImageDims();
      DLOG << "bias->ImageDims():  " << bias->ImageDims();
      DLOG << "out->ImageDims():  " << output->ImageDims();
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
      DLOG << "channel mul d2";
      cl_mem input_image = input->GetCLImage();
      cl_mem bias_image = bias->GetCLImage();
      cl_mem output_image = output->GetCLImage();
      int tensor_w = input->dims()[input->dims().size() - 1];
      status = clSetKernelArg(kernel, 0, sizeof(cl_mem),
                              reinterpret_cast<void *>(&input_image));
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel, 1, sizeof(cl_mem),
                              reinterpret_cast<void *>(&bias_image));
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel, 2, sizeof(cl_mem),
                              reinterpret_cast<void *>(&output_image));
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel, 3, sizeof(cl_int),
                              reinterpret_cast<void *>(&tensor_w));
      CL_CHECK_ERRORS(status);
      auto width = input->ImageWidth();
      auto height = input->ImageHeight();
      size_t global_work_size[2] = {width, height};
      status =
          clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 2,
                                 NULL, global_work_size, NULL, 0, NULL, NULL);
      CL_CHECK_ERRORS(status);
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
      //    bias->PrintTensor(*bias);
    } else if (bias_dim_size == 4) {
      DLOG << "channel_mul_d4";
      // etc. input  1 72 28 28
      // filter 1 72   -->  1 1 1 72
      DLOG << "input->ImageDims():  " << input->ImageDims();
      DLOG << "bias->ImageDims():  " << bias->ImageDims();
      DLOG << "out->ImageDims():  " << output->ImageDims();

      DLOG << "channel mul d2";
      cl_mem input_image = input->GetCLImage();
      cl_mem bias_image = bias->GetCLImage();
      cl_mem output_image = output->GetCLImage();
      int tensor_w = input->dims()[input->dims().size() - 1];
      status = clSetKernelArg(kernel, 0, sizeof(cl_mem),
                              reinterpret_cast<void *>(&input_image));
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel, 1, sizeof(cl_mem),
                              reinterpret_cast<void *>(&bias_image));
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel, 2, sizeof(cl_mem),
                              reinterpret_cast<void *>(&output_image));
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel, 3, sizeof(cl_int),
                              reinterpret_cast<void *>(&tensor_w));
      CL_CHECK_ERRORS(status);
      auto width = input->ImageWidth();
      auto height = input->ImageHeight();
      size_t global_work_size[2] = {width, height};
      status =
          clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 2,
                                 NULL, global_work_size, NULL, 0, NULL, NULL);
      CL_CHECK_ERRORS(status);
    } else {
      PADDLE_MOBILE_ENFORCE(false, "element mul not support this situation yet")
    }
178 179 180 181 182 183 184 185 186
  }
}

template class ElementwiseMulKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif