conv_kernel.cpp 4.3 KB
Newer Older
Z
zhaojiaying01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

L
liuruilong 已提交
15 16
#ifdef CONV_OP

朔-望's avatar
朔-望 已提交
17
#include "operators/kernel/conv_kernel.h"
18
#include "operators/kernel/central-arm-func/conv_arm_func.h"
朔-望's avatar
朔-望 已提交
19 20

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
21 22
namespace operators {

L
liuruilong 已提交
23
template <>
N
nhzlx 已提交
24
bool ConvKernel<CPU, float>::Init(ConvParam<CPU> *param) {
25 26 27 28
  bool conv3x3 = param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
                 param->Filter()->dims()[2] == 3;
  bool depth3x3 = conv3x3 && param->Groups() == param->Input()->dims()[1] &&
                  param->Input()->dims()[1] == param->Output()->dims()[1];
H
hjchen2 已提交
29
  if (param->Filter()->type() == typeid(int8_t)) {
30
    if (depth3x3 && param->Strides()[0] < 3 &&
31
        param->Strides()[0] == param->Strides()[1]) {
H
hjchen2 已提交
32 33 34 35
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE3x3_INT8;
    } else {
      param->ExecMode() = ConvParam<CPU>::EXEC_GEMM_INT8;
    }
H
hjchen2 已提交
36
  } else {
37 38 39
    if (depth3x3 && param->Strides()[0] == param->Strides()[1] &&
        param->Strides()[0] == 1 && param->Paddings()[0] == 1 &&
        param->Paddings()[0] == param->Paddings()[1]) {
H
hjchen2 已提交
40
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE3x3S1P1_FLOAT;
41 42 43 44 45 46 47 48
    } else if (depth3x3 && param->Strides()[0] == param->Strides()[1] &&
               param->Strides()[0] == 2 && param->Paddings()[0] == 0 &&
               param->Paddings()[0] == param->Paddings()[1]) {
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE3x3S2P0_FLOAT;
    } else if (depth3x3 && param->Strides()[0] == param->Strides()[1] &&
               param->Strides()[0] == 2 && param->Paddings()[0] == 1 &&
               param->Paddings()[0] == param->Paddings()[1]) {
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE3x3S2P1_FLOAT;
H
hjchen2 已提交
49
#ifndef __aarch64__
50
    } else if (conv3x3 && param->Strides()[0] == param->Strides()[1] &&
H
hjchen2 已提交
51
               param->Dilations()[0] == param->Dilations()[1] &&
52 53
               param->Strides()[0] == 1 && param->Dilations()[0] == 1 &&
               param->Output()->dims()[1] >= 16 &&
54 55
               param->Input()->dims()[1] >= 16 &&
               param->Input()->dims()[2] <= 140 /* refered from ncnn */) {
H
hjchen2 已提交
56 57
      param->ExecMode() = ConvParam<CPU>::EXEC_WINOGRAD3X3_FLOAT;
      // transform weight
58
      framework::Tensor transformed_weight;
H
hjchen2 已提交
59
      operators::math::winograd_transform_weight<8, 3>(*param->Filter(),
60 61
                                                       &transformed_weight);
      framework::TensorCopy(transformed_weight, param->Filter());
H
hjchen2 已提交
62
#endif
H
hjchen2 已提交
63 64 65 66
    } else {
      param->ExecMode() = ConvParam<CPU>::EXEC_GEMM_FLOAT;
    }
  }
L
liuruilong 已提交
67 68 69
  return true;
}

朔-望's avatar
朔-望 已提交
70
template <>
L
liuruilong 已提交
71
void ConvKernel<CPU, float>::Compute(const ConvParam<CPU> &param) {
H
hjchen2 已提交
72 73 74
  switch (param.ExecMode()) {
    case ConvParam<CPU>::EXEC_GEMM_INT8:
      GemmConv<int8_t, int32_t>(param);
H
hjchen2 已提交
75 76 77
      break;
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3_INT8:
      DepthwiseConv3x3<int8_t, int32_t>(param);
H
hjchen2 已提交
78 79 80 81 82
      break;
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3S1P1_FLOAT:
      math::DepthwiseConv3x3s1p1(param.Input(), param.Filter(), param.Output(),
                                 nullptr, false);
      break;
83 84 85 86 87 88 89
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3S2P1_FLOAT:
      math::DepthwiseConv3x3s2p1v2(param.Input(), param.Filter(),
                                   param.Output(), nullptr, false);
      break;
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3S2P0_FLOAT:
      math::DepthwiseConv3x3s2p0(param.Input(), param.Filter(), param.Output(),
                                 nullptr, false);
H
hjchen2 已提交
90 91 92 93 94 95 96 97 98 99 100
      break;
    case ConvParam<CPU>::EXEC_WINOGRAD3X3_FLOAT:
      WinogradConv3x3<8, 3>(param);
      break;
    case ConvParam<CPU>::EXEC_GEMM_FLOAT:
      GemmConv<float, float>(param);
      break;
    default:
      PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
                                    param.ExecMode());
  }
朔-望's avatar
朔-望 已提交
101 102
}

103
template class ConvKernel<CPU, float>;
朔-望's avatar
朔-望 已提交
104

朔-望's avatar
朔-望 已提交
105 106
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
107 108

#endif