pool_compute_test.cc 5.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <random>
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/opencl/target_wrapper.h"

namespace paddle {
namespace lite {

void pool_avg(const int padding_height,
              const int padding_width,
              const int stride_height,
              const int stride_width,
              const int ksize_height,
              const int ksize_width,
              const float* input_data,
              const DDim& in_dim,
              float* output_data,
              const DDim& out_dim) {
  const int batch_size = in_dim[0];
  const int input_height = in_dim[2];
  const int input_width = in_dim[3];
  const int output_channels = out_dim[1];
  const int output_height = out_dim[2];
  const int output_width = out_dim[3];

  const size_t input_spatial_size = input_height * input_width;
  const size_t output_spatial_size = output_height * output_width;

  for (int i = 0; i < batch_size; i++) {
    for (int c = 0; c < output_channels; ++c) {
      int channel = i * output_channels + c;
      const float* input_ptr = input_data + channel * input_spatial_size;
      float* output_ptr = output_data + channel * output_spatial_size;

      for (int ph = 0; ph < output_height; ++ph) {
        int hstart = ph * stride_height - padding_height;
        int hend = std::min(hstart + ksize_height, input_height);
        hstart = std::max(hstart, 0);
        for (int pw = 0; pw < output_width; ++pw) {
          int wstart = pw * stride_width - padding_width;
          int wend = std::min(wstart + ksize_width, input_width);
          wstart = std::max(wstart, 0);

          float val = 0.f;
          int count = 0;
          for (int h = hstart; h < hend; ++h) {
            for (int w = wstart; w < wend; ++w) {
              val += input_ptr[h * input_width + w];
              ++count;
            }
          }
          output_ptr[ph * output_width + pw] =
              (count > 0) ? val * (1.f / count) : 0.f;
        }
      }
    }
  }
}

TEST(pool2d, compute) {
  LOG(INFO) << "to get kernel ...";
  auto kernels = KernelRegistry::Global().Create(
      "pool2d", TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW));
  ASSERT_FALSE(kernels.empty());

  auto kernel = std::move(kernels.front());

  LOG(INFO) << "get kernel";

  lite::Tensor x, out;
  operators::PoolParam param;
  param.x = &x;
  param.output = &out;
  param.global_pooling = true;
  param.pooling_type = "avg";
  param.paddings = std::vector<int>{0, 0};
  param.strides = std::vector<int>{1, 1};
  param.ksize = std::vector<int>{7, 7};

  std::unique_ptr<KernelContext> context(new KernelContext);
  context->As<OpenCLContext>().InitOnce();

  kernel->SetParam(param);
  std::unique_ptr<KernelContext> pool_context(new KernelContext);
  context->As<OpenCLContext>().CopySharedTo(
      &(pool_context->As<OpenCLContext>()));
  kernel->SetContext(std::move(pool_context));

  const DDim in_dim = DDim(std::vector<DDim::value_type>{4, 1024, 7, 7});
  const DDim out_dim = DDim(std::vector<DDim::value_type>{4, 1024, 1, 1});
  x.Resize(in_dim);
  out.Resize(out_dim);

  auto* x_data = x.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));

  std::default_random_engine engine;
  std::uniform_real_distribution<float> dist(-5, 5);
  auto* mapped_x = static_cast<float*>(
      TargetWrapperCL::Map(x_data, 0, sizeof(float) * in_dim.production()));
  for (int i = 0; i < in_dim.production(); i++) {
    mapped_x[i] = dist(engine);
  }

  kernel->Launch();

  auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
  auto* out_ptr = param.output->data<float, cl::Buffer>();
  auto it = wait_list->find(out_ptr);
  if (it != wait_list->end()) {
    VLOG(4) << "--- Find the sync event for the target cl tensor. ---";
    auto& event = *(it->second);
    event.wait();
  } else {
    LOG(FATAL) << "Could not find the sync event for the target cl tensor.";
  }

  std::unique_ptr<float[]> out_ref(new float[out_dim.production()]);
  pool_avg(0, 0, 1, 1, 7, 7, mapped_x, in_dim, out_ref.get(), out_dim);
  TargetWrapperCL::Unmap(x_data, mapped_x);
  auto* out_data = out.mutable_data<float, cl::Buffer>();
  auto* mapped_out = static_cast<float*>(
      TargetWrapperCL::Map(out_data, 0, sizeof(float) * out_dim.production()));
  for (int i = 0; i < out_dim.production(); i++) {
    EXPECT_NEAR(mapped_out[i], out_ref[i], 1e-6);
  }
  TargetWrapperCL::Unmap(out_data, mapped_out);
}

}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(pool2d, kOpenCL, kFloat, kNCHW, def);