conv_winograd_3x3.cc 15.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "lite/backends/arm/math/conv_impl.h"
#include "lite/backends/arm/math/packed_sgemm.h"
Y
Yan Chunwei 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

namespace paddle {
namespace lite {
namespace arm {
namespace math {

void transpose(float* data_out, const float* data_in, int w_in, int h_in);
void transform_input_f6x6(float* dout, const float* din);
void transform_output_f6x6(float* output, const float* din, float bias);
void conv_winograd3x3(const float* din,
                      float* dout,
                      int num,
                      int chout,
                      int hout,
                      int wout,
                      int chin,
                      int hin,
                      int win,
                      const float* weights,
                      const float* bias,
                      const operators::ConvParam& param,
                      ARMContext* ctx) {
  int threads = ctx->threads();

  const int pad_h = param.paddings[0];
  const int pad_w = param.paddings[1];
  int size_in_channel = win * hin;
  int size_out_channel = wout * hout;
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;

  //! transform input
  int tile_w = (wout + 5) / 6;
  int tile_h = (hout + 5) / 6;
  int size_tile = tile_h * tile_w;
  int size_trans_channel = 8 * 8 * size_tile;
  int max_ch = chin > chout ? chin : chout;

  int m = chout;
  int n = size_tile;
  int k = chin;

  float* tmp_work_space =
      ctx->workspace_data<float>() + ctx->llc_size() / sizeof(float);

  //! tmp data buffer for input transform
  float* tmp_data1 = tmp_work_space;
  //! tmp data buffer for dot mul
  float* tmp_data2 = tmp_data1 + size_trans_channel * max_ch;

  for (int i = 0; i < num; ++i) {
    const float* din_batch = din + i * chin * size_in_channel;
    float* dout_batch = dout + i * chout * size_out_channel;

//! transform input Bt * data * B
#pragma omp parallel for num_threads(threads)
    for (int j = 0; j < chin; ++j) {
      const float* din_channel = din_batch + j * size_in_channel;
      float* data_trans_channel = tmp_data1 + j * size_trans_channel;

      for (int h = 0; h < tile_h; h++) {
        for (int w = 0; w < tile_w; w++) {
          //! prepare data 8x8
          //! row 8
          float data_in_tmp[8][8] = {0.f};
          // memset(data_in_tmp[0], 0, sizeof(float) * 64);
          for (int j = 0; j < 8; ++j) {
            int start_row = h * 6 + j - pad_h;
            if (start_row >= 0 && start_row < hin) {
              for (int k = 0; k < 8; ++k) {
                int start_col = w * 6 + k - pad_w;
                if (start_col >= 0 && start_col < win) {
                  data_in_tmp[j][k] = din_channel[start_row * win + start_col];
                }
              }
            }
          }
          transform_input_f6x6(data_trans_channel, data_in_tmp[0]);
          data_trans_channel += 64;
        }
      }
    }
    //! end of transform input

    ////////////////////////////////////////////////////////////////////////////////
    //! dot mul
    //! transpose input, convert from ch_in * tile_h * tile_w * 64 to
    //! 64 * ch_in * tile_h * tile_w
105
    int hblock = get_hblock(ctx);
Y
Yan Chunwei 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    int m_round = hblock * ((chout + hblock - 1) / hblock);
    int stride_a = m_round * chin;
    int stride_b = chin * size_tile;
    int stride_c = chout * size_tile;
    transpose(tmp_data2, tmp_data1, 64, stride_b);

    //! gemm
    // #pragma omp parallel for
    for (int l = 0; l < 64; ++l) {
      const float* ptr_a = weights + l * stride_a;
      const float* ptr_b = tmp_data2 + l * stride_b;
      float* ptr_c = tmp_data1 + l * stride_c;
      sgemm_prepack(false,
                    chout,
                    size_tile,
                    chin,
                    ptr_a,
                    ptr_b,
                    size_tile,
                    0.f,
                    ptr_c,
                    size_tile,
                    nullptr,
                    false,
                    false,
                    ctx);
    }

    //! transpose output, convert from 64 * ch_out * tile_h * tile_w to
    //! ch_out * tile_h * tile_w * 64
    transpose(tmp_data2, tmp_data1, stride_c, 64);
//! end of dot mul

///////////////////////////////////////////////////////////////////////////////
//! transform output
#pragma omp parallel for
    for (int i = 0; i < chout; ++i) {
      float bias_value = flag_bias ? bias[i] : 0.f;
      float* dout_tmp = tmp_data2 + i * size_trans_channel;
      float* dout_channel = dout_batch + i * size_out_channel;

      for (int h = 0; h < tile_h; ++h) {
        for (int w = 0; w < tile_w; ++w) {
          float out_tmp[6][6];

          transform_output_f6x6(out_tmp[0], dout_tmp, bias_value);
          dout_tmp += 64;

          for (int j = 0; j < 6; ++j) {
            int end_row = h * 6 + j;
            if (end_row < hout) {
              for (int k = 0; k < 6; ++k) {
                int end_col = w * 6 + k;
                if (end_col < wout) {
                  if (flag_relu) {
                    dout_channel[end_row * wout + end_col] =
                        out_tmp[j][k] > 0.f ? out_tmp[j][k] : 0.f;
                  } else {
                    dout_channel[end_row * wout + end_col] = out_tmp[j][k];
                  }
                }
              }
            }
          }
        }
      }
    }
    //! end of transform output
  }
}

/**
 * \brief transpose with arm neon optimization
 * @param data_out
 * @param data_in
 * @param w_in
 * @param h_in
 */
void transpose(float* data_out, const float* data_in, int w_in, int h_in) {
  int nw = w_in >> 2;
  int nh = h_in >> 2;
  int size_in = w_in * h_in;

  float* ptr_out = data_out;
  const float* ptr_in = data_in;
#pragma omp parallel for
  for (int h = 0; h < nh; h++) {
    const float* ptr_din_row = ptr_in + h * 4 * w_in;
    for (int w = 0; w < nw; w++) {
      float* data_out_ptr = ptr_out + w * 4 * h_in + h * 4;
      const float* din0 = ptr_din_row;
      const float* din1 = din0 + w_in;
      const float* din2 = din1 + w_in;
      const float* din3 = din2 + w_in;

      float* dout0 = data_out_ptr;
      float* dout1 = dout0 + h_in;
      float* dout2 = dout1 + h_in;
      float* dout3 = dout2 + h_in;
#ifdef __aarch64__
      asm("ldr    q0, [%[in0]]                                            \n" /*load input 0*/
          "ldr    q1, [%[in1]]                                \n"
          "ldr    q2, [%[in2]]                                \n"
          "ldr    q3, [%[in3]]                                \n"
          "trn1   v4.4s, v0.4s, v1.4s                         \n"
          "trn2   v5.4s, v0.4s, v1.4s                         \n"
          "trn1   v6.4s, v2.4s, v3.4s                         \n"
          "trn2   v7.4s, v2.4s, v3.4s                         \n"
          "trn1   v8.2d, v4.2d, v6.2d                         \n"
          "trn1   v9.2d, v5.2d, v7.2d                         \n"
          "trn2   v10.2d, v4.2d, v6.2d                        \n"
          "trn2   v11.2d, v5.2d, v7.2d                        \n"
          "str    q8, [%[out0]]                               \n"
          "str    q9, [%[out1]]                               \n"
          "str   q10, [%[out2]]                               \n"
          "str   q11, [%[out3]]                               \n"
          :
          : [out0] "r"(dout0),
            [out1] "r"(dout1),
            [out2] "r"(dout2),
            [out3] "r"(dout3),
            [in0] "r"(din0),
            [in1] "r"(din1),
            [in2] "r"(din2),
            [in3] "r"(din3)
          : "v0",
            "v1",
            "v2",
            "v3",
            "v4",
            "v5",
            "v6",
            "v7",
            "v8",
            "v9",
            "v10",
            "v11");
#else
      asm("vld1.32 {d0, d1}, [%[in0]]    \n"
          "vld1.32 {d2, d3}, [%[in1]]    \n"
          "vld1.32 {d4, d5}, [%[in2]]    \n"
          "vld1.32 {d6, d7}, [%[in3]]    \n"
          "vtrn.32 q0, q1                \n"
          "vtrn.32 q2, q3                \n"
          "vswp d1, d4                   \n"
          "vswp d3, d6                   \n"
          "vst1.32 {d0, d1}, [%[out0]]   \n"
          "vst1.32 {d2, d3}, [%[out1]]   \n"
          "vst1.32 {d4, d5}, [%[out2]]   \n"
          "vst1.32 {d6, d7}, [%[out3]]   \n"
          :
          : [out0] "r"(dout0),
            [out1] "r"(dout1),
            [out2] "r"(dout2),
            [out3] "r"(dout3),
            [in0] "r"(din0),
            [in1] "r"(din1),
            [in2] "r"(din2),
            [in3] "r"(din3)
          : "q0", "q1", "q2", "q3");
#endif
      ptr_din_row += 4;
    }
  }
  // remian
  for (int h = 0; h < h_in; h++) {
    for (int w = nw * 4; w < w_in; w++) {
      const float* data_in_ptr = ptr_in + h * w_in + w;
      float* data_out_ptr = ptr_out + w * h_in + h;
      *data_out_ptr = *data_in_ptr;
    }
  }
  for (int w = 0; w < w_in; w++) {
    for (int h = nh * 4; h < h_in; h++) {
      const float* data_in_ptr = ptr_in + h * w_in + w;
      float* data_out_ptr = ptr_out + w * h_in + h;
      *data_out_ptr = *data_in_ptr;
    }
  }
}

/**
 * \brief winograd transform conv3x3 weights, f63
 * this is done in op initialization or creation, only do once
 * dout = G * g * GT, where G is the transform coeff, g is the input weights
 * @param dout
 * @param din
 * @param ch_out
 * @param ch_in
 * @param work_space
 */
void winograd_transform_weights(
    void* dout, const void* din, int ch_out, int ch_in, void* work_space) {
  const float coeff[8][3] = {{1.0f, 0.0f, 0.0f},
                             {-2.0f / 9, -2.0f / 9, -2.0f / 9},
                             {-2.0f / 9, 2.0f / 9, -2.0f / 9},
                             {1.0f / 90, 1.0f / 45, 2.0f / 45},
                             {1.0f / 90, -1.0f / 45, 2.0f / 45},
                             {32.0f / 45, 16.0f / 45, 8.0f / 45},
                             {32.0f / 45, -16.0f / 45, 8.0f / 45},
                             {0.0f, 0.0f, 1.0f}};

  float* ptr_out = static_cast<float*>(work_space);

  for (int i = 0; i < ch_out; i++) {
    for (int j = 0; j < ch_in; j++) {
      const float* kernel0 =
          static_cast<const float*>(din) + (i * ch_in + j) * 9;
      float* ptr_channel = ptr_out + (i * ch_in + j) * 64;

      //! transform kernel, transposed
      const float* k0 = kernel0;
      const float* k1 = kernel0 + 3;
      const float* k2 = kernel0 + 6;

      //! h
      float tmp[8][3];
      for (int i = 0; i < 8; i++) {
        tmp[i][0] =
            k0[0] * coeff[i][0] + k0[1] * coeff[i][1] + k0[2] * coeff[i][2];
        tmp[i][1] =
            k1[0] * coeff[i][0] + k1[1] * coeff[i][1] + k1[2] * coeff[i][2];
        tmp[i][2] =
            k2[0] * coeff[i][0] + k2[1] * coeff[i][1] + k2[2] * coeff[i][2];
      }

      //! v
      for (int j = 0; j < 8; j++) {
        float* tmpp = &tmp[j][0];
        for (int i = 0; i < 8; i++) {
          ptr_channel[j * 8 + i] = tmpp[0] * coeff[i][0] +
                                   tmpp[1] * coeff[i][1] +
                                   tmpp[2] * coeff[i][2];
        }
      }
    }
  }
  transpose(static_cast<float*>(dout), ptr_out, 64, ch_out * ch_in);
}

/**
 * \brief winograd conv, transform input, f6x3
 * dout = BT * d * B, whrer B is the transform
 * BT = 1      0   -21/4       0     21/4        0   -1   0
 *      0      1       1   -17/4    -17/4        1    1   0
 *      0     -1       1    17/4    -17/4       -1    1   0
 *      0    1/2     1/4    -5/2     -5/4        2    1   0
 *      0   -1/2     1/4     5/2     -5/4       -2    1   0
 *      0      2       4    -5/2       -5      1/2    1   0
 *      0     -2       4     5/2       -5     -1/2    1   0
 *      0     -1       0    21/4        0    -21/4    0   1
 * @param dout
 * @param din
 */
void transform_input_f6x6(float* dout, const float* din) {
  float tmp[8][8];
  //! BT * d
  for (int m = 0; m < 8; m++) {
    tmp[0][m] = din[0] - din[6] + (din[4] - din[2]) * 5.25f;
    tmp[7][m] = din[7] - din[1] + (din[3] - din[5]) * 5.25f;

    float tmp12a = din[2] + din[6] - din[4] * 4.25f;
    float tmp12b = din[1] + din[5] - din[3] * 4.25f;

    tmp[1][m] = tmp12a + tmp12b;
    tmp[2][m] = tmp12a - tmp12b;

    float tmp34a = din[6] + din[2] * 0.25f - din[4] * 1.25f;
    float tmp34b = din[1] * 0.5f - din[3] * 2.5f + din[5] * 2.f;

    tmp[3][m] = tmp34a + tmp34b;
    tmp[4][m] = tmp34a - tmp34b;

    float tmp56a = din[6] + (din[2] - din[4] * 1.25f) * 4.f;
    float tmp56b = din[1] * 2.f - din[3] * 2.5f + din[5] * 0.5f;

    tmp[5][m] = tmp56a + tmp56b;
    tmp[6][m] = tmp56a - tmp56b;

    din += 8;
  }

  for (int m = 0; m < 8; m++) {
    const float* tmp0 = tmp[m];

    dout[0] = tmp0[0] - tmp0[6] + (tmp0[4] - tmp0[2]) * 5.25f;
    dout[7] = tmp0[7] - tmp0[1] + (tmp0[3] - tmp0[5]) * 5.25f;

    float tmp12a = tmp0[2] + tmp0[6] - tmp0[4] * 4.25f;
    float tmp12b = tmp0[1] + tmp0[5] - tmp0[3] * 4.25f;

    dout[1] = tmp12a + tmp12b;
    dout[2] = tmp12a - tmp12b;

    float tmp34a = tmp0[6] + tmp0[2] * 0.25f - tmp0[4] * 1.25f;
    float tmp34b = tmp0[1] * 0.5f - tmp0[3] * 2.5f + tmp0[5] * 2.f;

    dout[3] = tmp34a + tmp34b;
    dout[4] = tmp34a - tmp34b;

    float tmp56a = tmp0[6] + (tmp0[2] - tmp0[4] * 1.25f) * 4.f;
    float tmp56b = tmp0[1] * 2.f - tmp0[3] * 2.5f + tmp0[5] * 0.5f;

    dout[5] = tmp56a + tmp56b;
    dout[6] = tmp56a - tmp56b;

    dout += 8;
  }
}

/**
 * \brief winograd conv, transform output, f63
 * out = AT * din * A
 * AT = 1      1       1       1        1        1        1   0
 *      0      1      -1       2       -2      1/2     -1/2   0
 *      0      1       1       4        4      1/4      1/4   0
 *      0      1      -1       8       -8      1/8     -1/8   0
 *      0      1       1      16       16     1/16     1/16   0
 *      0      1      -1      32      -32     1/32    -1/32   1
 * @param output
 * @param din
 * @param bias
 */
void transform_output_f6x6(float* output, const float* din, float bias) {
  float tmp[6][8];
  for (int m = 0; m < 8; m++) {
    float tmp024a = din[1] + din[2];
    float tmp135a = din[1] - din[2];

    float tmp024b = din[3] + din[4];
    float tmp135b = din[3] - din[4];

    float tmp024c = din[5] + din[6];
    float tmp135c = din[5] - din[6];

    tmp[0][m] = din[0] + tmp024a + tmp024b + tmp024c;
    tmp[2][m] = tmp024a + tmp024b * 4 + tmp024c * 0.25f;
    tmp[4][m] = tmp024a + tmp024b * 16 + tmp024c * 0.0625f;

    tmp[1][m] = tmp135a + tmp135b * 2 + tmp135c * 0.5f;
    tmp[3][m] = tmp135a + tmp135b * 8 + tmp135c * 0.125f;
    tmp[5][m] = din[7] + tmp135a + tmp135b * 32 + tmp135c * 0.03125f;

    din += 8;
  }

  for (int m = 0; m < 6; m++) {
    const float* tmp0 = tmp[m];

    float tmp024a = tmp0[1] + tmp0[2];
    float tmp135a = tmp0[1] - tmp0[2];

    float tmp024b = tmp0[3] + tmp0[4];
    float tmp135b = tmp0[3] - tmp0[4];

    float tmp024c = tmp0[5] + tmp0[6];
    float tmp135c = tmp0[5] - tmp0[6];

    output[0] = bias + tmp0[0] + tmp024a + tmp024b + tmp024c;
    output[2] = bias + tmp024a + tmp024b * 4 + tmp024c * 0.25f;
    output[4] = bias + tmp024a + tmp024b * 16 + tmp024c * 0.0625f;

    output[1] = bias + tmp135a + tmp135b * 2 + tmp135c * 0.5f;
    output[3] = bias + tmp135a + tmp135b * 8 + tmp135c * 0.125f;
    output[5] = bias + tmp0[7] + tmp135a + tmp135b * 32 + tmp135c * 0.03125f;

    output += 6;
  }
}

}  // namespace math
}  // namespace arm
}  // namespace lite
}  // namespace paddle