dropout_op_test.cc 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/dropout_op.h"
#include <gtest/gtest.h>
#include <random>
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

void dropout_ref(const std::shared_ptr<operators::DropoutOp> op) {
  Scope* scope = op->scope();
  const OpInfo* op_info = op->op_info();
  auto x = scope->FindVar(op_info->Input("X").front())->GetMutable<Tensor>();
  auto out =
      scope->FindVar(op_info->Output("Out").front())->GetMutable<Tensor>();
  auto dropout_implementation =
      op_info->GetAttr<std::string>("dropout_implementation");
  auto dropout_prob = op_info->GetAttr<float>("dropout_prob");
  float alpha = 1.0f - dropout_prob;
  if (dropout_implementation == "upscale_in_train") {
    alpha = 1.;
  }
  float beta = 0.;

  auto x_data = x->data<float>();
  auto out_data = out->mutable_data<float>();
  DDim x_dims = x->dims();
  DDim out_dims = out->dims();
  CHECK_EQ(x_dims.production(), out_dims.production());
  for (int i = 0; i < out_dims.production(); i++) {
    out_data[i] = x_data[i] * alpha + beta;
  }
}

void test_dropout(int bs,
                  int ic,
                  int ih,
                  int iw,
                  std::string dropout_implementation,
                  float dropout_prob,
                  float bias) {
  // prepare input&output variables
  Scope scope;
  std::string x_var_name("x");
  std::string out_var_name("out");
  std::string mask_var_name("mask");
  std::string out_ref_var_name("out_ref");
  auto* x = scope.Var(x_var_name)->GetMutable<Tensor>();
  auto* out = scope.Var(out_var_name)->GetMutable<Tensor>();
  auto* mask = scope.Var(mask_var_name)->GetMutable<Tensor>();
  auto* out_ref = scope.Var(out_ref_var_name)->GetMutable<Tensor>();
  x->Resize({bs, ic, ih, iw});

  // initialize input&output data
  FillTensor<float, int>(x);

  // initialize op desc
  bool is_test = true;
  bool fix_seed = false;
  int seed = 0;
  cpp::OpDesc opdesc;
  opdesc.SetType("dropout");
  opdesc.SetInput("X", {x_var_name});
  opdesc.SetOutput("Out", {out_var_name});
  opdesc.SetOutput("Mask", {mask_var_name});
  opdesc.SetAttr("is_test", is_test);
  opdesc.SetAttr("fix_seed", fix_seed);
  opdesc.SetAttr("seed", seed);
  opdesc.SetAttr("dropout_implementation", dropout_implementation);
  opdesc.SetAttr("dropout_prob", dropout_prob);
  VLOG(6) << "mask: " << mask->dims()[0] << std::endl;
  // create and convert op to MLU model, then run it on MLU
  auto op = CreateOp<operators::DropoutOp>(opdesc, &scope);
  dropout_ref(op);
  out_ref->CopyDataFrom(*out);

  Tensor input_trans;
  input_trans.Resize({bs, ic, ih, iw});
  transpose(x->mutable_data<float>(),
            input_trans.mutable_data<float>(),
            {bs, ic, ih, iw},
            {0, 2, 3, 1});
  auto os = out->dims();
  out->Resize({static_cast<int>(os[0]),
               static_cast<int>(os[2]),
               static_cast<int>(os[3]),
               static_cast<int>(os[1])});
  x->CopyDataFrom(input_trans);
  x->Resize({bs, ih, iw, ic});

  LaunchOp(op, {x_var_name}, {out_var_name});

  // execute reference implementation and save to output tensor('out')

  // compare results
  auto* out_data = out->mutable_data<float>();
  auto* out_ref_data = out_ref->mutable_data<float>();
  Tensor output_trans;
  output_trans.Resize(os);
  transpose(out_data,
            output_trans.mutable_data<float>(),
            {static_cast<int>(os[0]),
             static_cast<int>(os[2]),
             static_cast<int>(os[3]),
             static_cast<int>(os[1])},
            {0, 3, 1, 2});
  out_data = output_trans.mutable_data<float>();
  for (int i = 0; i < out->dims().production(); i++) {
    VLOG(5) << i;
    EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-5);
  }
}

TEST(MLUBridges, dropout) {
  for (auto bs : {1, 3}) {
    for (auto ic : {1, 3}) {
      for (auto ih : {3, 4}) {
        for (auto iw : {4, 3}) {
          for (auto dropout_implementation :
               {"downgrade_in_infer", "upscale_in_train"}) {
            for (auto dropout_prob : {0.f, 1.0f}) {
              VLOG(3) << "bs: " << bs << " ic: " << ic << " ih: " << ih
                      << " iw: " << iw
                      << " dropout_implementation: " << dropout_implementation
                      << " dropout_prob: " << dropout_prob;
              test_dropout(
                  bs, ic, ih, iw, dropout_implementation, dropout_prob, 0.);
            }
          }
        }
      }
    }
  }
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

USE_SUBGRAPH_BRIDGE(dropout, kMLU);