mdl2fluid.py 4.0 KB
Newer Older
xiebaiyuan's avatar
xiebaiyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
import json
import framework_pb2 as framework_pb2
import op_types as types


def load_mdl(mdl_json_path):
    # print('mdl json path : ' + mdl_json_path)
    with open(mdl_json_path, 'r') as f:
        return json.load(f)


class Converter:
    'convert mdlmodel to fluidmodel'

    def __init__(self, mdl_json_path):
        self.mdl_json_path = mdl_json_path
xiebaiyuan's avatar
xiebaiyuan 已提交
17
        print mdl_json_path
xiebaiyuan's avatar
xiebaiyuan 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
        self.mdl_json = load_mdl(self.mdl_json_path)
        self.program_desc = framework_pb2.ProgramDesc()

        # print(json_dick)
        # layers = (json_dick['layer'])
        # for layer in layers:
        #     print(layer)

    def convert(self):
        print 'convert begin.....'
        # add block_desc
        block_desc = self.program_desc.blocks.add()
        block_desc.idx = 0
        block_desc.parent_idx = -1
        self.package_ops(block_desc)
        print 'blocks: '
        print self.program_desc.blocks

    def package_ops(self, block_desc):
        # add ops with layer
        if 'layer' in self.mdl_json:

            layers_ = self.mdl_json['layer']
            for layer in layers_:
xiebaiyuan's avatar
xiebaiyuan 已提交
42
                desc_ops_add = block_desc.ops.add()
xiebaiyuan's avatar
xiebaiyuan 已提交
43 44 45 46 47 48

                # print layer
                # for i in layer:
                #     print i
                if 'name' in layer:
                    l_name = layer['name']
xiebaiyuan's avatar
xiebaiyuan 已提交
49 50 51 52 53
                if 'type' in layer:
                    l_type = layer['type']
                    # print l_type
                    # print mdl2fluid_op_layer_dict.get(l_type)
                    desc_ops_add.type = types.mdl2fluid_op_layer_dict.get(l_type)
xiebaiyuan's avatar
xiebaiyuan 已提交
54 55 56
                if 'weight' in layer:
                    l_weights = layer['weight']

xiebaiyuan's avatar
xiebaiyuan 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
                    op_tup = types.op_io_dict.get(desc_ops_add.type).get(types.mdl_weight_key)
                    # print len(op_tup)

                    for i, val in enumerate(op_tup):
                        print i
                        print val
                        inputs_add = desc_ops_add.inputs.add()
                        # print w
                        inputs_add.parameter = op_tup[i]
                        inputs_add.arguments.append(l_weights[i])

                    # for w in l_weights:
                    #     inputs_add = desc_ops_add.inputs.add()
                    #     # print w
                    #     inputs_add.parameter = op_tup[0]
                    #     inputs_add.arguments.append(w)
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76 77
                if 'param' in layer:
                    l_params = layer['param']

                if 'output' in layer:
                    l_outputs = layer['output']
xiebaiyuan's avatar
xiebaiyuan 已提交
78 79 80 81 82
                    for o in l_outputs:
                        # print o
                        outputs_add = desc_ops_add.outputs.add()
                        outputs_add.parameter = types.op_io_dict.get(desc_ops_add.type).get(types.mdl_outputs_key)
                        outputs_add.arguments.append(o)
xiebaiyuan's avatar
xiebaiyuan 已提交
83 84 85 86

                if 'input' in layer:
                    l_inputs = layer['input']
                    for i in l_inputs:
xiebaiyuan's avatar
xiebaiyuan 已提交
87
                        inputs_add = desc_ops_add.inputs.add()
xiebaiyuan's avatar
xiebaiyuan 已提交
88
                        # print i
xiebaiyuan's avatar
xiebaiyuan 已提交
89
                        inputs_add.parameter = types.op_io_dict.get(desc_ops_add.type).get(types.mdl_inputs_key)
xiebaiyuan's avatar
xiebaiyuan 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
                        inputs_add.arguments.append(i)


# print mdl_path
# # model
# mdl_model = load_mdl(mdl_path)
# for key in mdl_model:
#     print key
#
# # layer
# layers = mdl_model['layer']
# print layers
#
# for layer in layers:
#     print layer
#     for i in layer:
#         print i
#     if 'name' in layer:
#         l_name = layer['name']
#
#     if 'weight' in layer:
#         l_weights = layer['weight']
#
#     if 'param' in layer:
#         l_params = layer['param']
#
#     if 'output' in layer:
#         l_outputs = layer['output']
#
#     if 'input' in layer:
#         l_inputs = layer['input']
#
#     if 'type' in layer:
#         l_type = layer['type']
#
# print mdl_model['matrix']
#
# package()

xiebaiyuan's avatar
xiebaiyuan 已提交
129
mdl_path = "/Users/xiebaiyuan/PaddleProject/paddle-mobile/python/tools/mdl2fluid/multiobjects/YOLO_Universal.json"
xiebaiyuan's avatar
xiebaiyuan 已提交
130 131
converter = Converter(mdl_path)
converter.convert()