elementwise_mul_image_compute.cc 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
17
#include "lite/backends/opencl/cl_half.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class ElementwiseMulImageCompute
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::ElementwiseParam;

  std::string doc() const override {
    return "ElementwiseMul using cl::Image2D(ImageDefault/RGBA), kFP32";
  }

  void PrepareForRun() override {
    ele_param_ = param_.get_mutable<param_t>();
    auto* y = ele_param_->Y;
    auto* x = ele_param_->X;
    auto y_dims = y->dims();
    auto x_dims = x->dims();
    if (y_dims == x_dims) {
      kernel_func_name_ = "elementwise_mul";
    } else if (y_dims.size() == 1) {
      kernel_func_name_ = "channel_mul_d1";
    } else if (y_dims.size() == 2) {
      if (x_dims[0] == y_dims[0] && x_dims[1] == y_dims[1]) {
        kernel_func_name_ = "channel_mul_d2_nc";
      } else {
        kernel_func_name_ = "channel_mul_d2_hw";
      }
59
    } else if (y_dims.size() == 4 || x_dims.size() == 4) {
60 61 62 63 64 65
      kernel_func_name_ = "channel_mul_d4";
    } else {
      LOG(FATAL) << "ElementwiseMul not supported y_dims.size():"
                 << y_dims.size()
                 << ", x_dims.size():" << ele_param_->X->dims().size();
    }
66
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    VLOG(4) << "y_dims:" << y_dims;
    VLOG(4) << "y_dims.size():" << y_dims.size();

    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/elementwise_mul_kernel.cl", build_options_);
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto* x = ele_param_->X;
    auto* y = ele_param_->Y;
    auto* out = ele_param_->Out;

83
#ifndef LITE_SHUTDOWN_LOG
84 85 86 87 88 89
    VLOG(4) << "x->target():" << TargetToStr(x->target());
    VLOG(4) << "y->target():" << TargetToStr(y->target());
    VLOG(4) << "out->target():" << TargetToStr(out->target());
    VLOG(4) << "x->dims():" << x->dims();
    VLOG(4) << "y->dims():" << y->dims();
    VLOG(4) << "out->dims():" << out->dims();
90
#endif
91 92 93 94 95 96 97 98 99 100

    paddle::lite::CLImageConverterDefault default_convertor;
    auto x_img_shape =
        default_convertor.InitImageDimInfoWith(x->dims());  // w, h
    auto x_img_width = x_img_shape[0];
    auto x_img_height = x_img_shape[1];
    auto out_img_shape =
        default_convertor.InitImageDimInfoWith(out->dims());  // w, h
    auto y_img_shape = default_convertor.InitImageDimInfoWith(y->dims());

101 102 103 104
    auto* x_img = x->data<half_t, cl::Image2D>();
    auto* y_img = y->data<half_t, cl::Image2D>();
    auto* out_img = out->mutable_data<half_t, cl::Image2D>(out_img_shape[0],
                                                           out_img_shape[1]);
105

106
#ifndef LITE_SHUTDOWN_LOG
107 108 109 110
    VLOG(4) << "x_img_shape[w,h]:" << x_img_width << " " << x_img_height;
    VLOG(4) << "y_img_shape[w,h]:" << y_img_shape[0] << " " << y_img_shape[1];
    VLOG(4) << "out_img_shape[w,h]:" << out_img_shape[0] << " "
            << out_img_shape[1];
111
#endif
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    auto y_dims = y->dims();
    auto x_dims = x->dims();
    if (y_dims == x_dims) {
      // kernel: elementwise_mul(channel_mul_d4)
      cl_int status = kernel.setArg(arg_idx, *x_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *y_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *out_img);
      CL_CHECK_FATAL(status);
    } else if (y_dims.size() == 1 || y_dims.size() == 4) {
      auto tensor_w = x_dims[x_dims.size() - 1];
130
#ifndef LITE_SHUTDOWN_LOG
131
      VLOG(4) << "tensor_w:" << tensor_w;
132
#endif
133 134 135 136 137 138 139 140 141 142 143 144
      // kernel: channel_mul_d1 / channel_mul_d4
      cl_int status = kernel.setArg(arg_idx, *x_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *y_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *out_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, static_cast<const int>(tensor_w));
      CL_CHECK_FATAL(status);
    } else if (y_dims.size() == 2) {
      if (x_dims[0] == y_dims[0] && x_dims[1] == y_dims[1]) {
        auto tensor_w = x_dims[x_dims.size() - 1];
145
#ifndef LITE_SHUTDOWN_LOG
146
        VLOG(4) << "tensor_w:" << tensor_w;
147
#endif
148 149 150 151 152 153 154 155 156 157 158 159
        // kernel: channel_mul_d2_nc
        cl_int status = kernel.setArg(arg_idx, *x_img);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(++arg_idx, *y_img);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(++arg_idx, *out_img);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(++arg_idx, static_cast<const int>(tensor_w));
        CL_CHECK_FATAL(status);
      } else {
        auto y_tensor_h = y->dims()[0];
        auto y_tensor_w = y->dims()[1];
160
#ifndef LITE_SHUTDOWN_LOG
161
        VLOG(4) << "y_tensor_w:" << y_tensor_w << " y_tensor_h:" << y_tensor_h;
162
#endif
163 164 165 166 167 168 169 170 171 172 173 174
        // kernel: channel_mul_d2_hw
        cl_int status = kernel.setArg(arg_idx, *x_img);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(++arg_idx, *y_img);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(++arg_idx, *out_img);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(++arg_idx, static_cast<const int>(y_tensor_w));
        CL_CHECK_FATAL(status);
        status = kernel.setArg(++arg_idx, static_cast<const int>(y_tensor_h));
        CL_CHECK_FATAL(status);
      }
175 176 177 178 179 180 181 182 183 184 185 186
    } else if (x_dims.size() == 4) {
      auto tensor_w = y_dims[y_dims.size() - 1];
      VLOG(4) << "tensor_w:" << tensor_w;
      // kernel: channel_mul_d4
      cl_int status = kernel.setArg(arg_idx, *y_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *x_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *out_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, static_cast<const int>(tensor_w));
      CL_CHECK_FATAL(status);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    } else {
      LOG(FATAL) << "ElementwiseMul not supported y_dims.size():"
                 << y_dims.size();
    }

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(x_img_width),
                    static_cast<cl::size_type>(x_img_height)};
    auto status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
204
#ifndef LITE_SHUTDOWN_LOG
205
    VLOG(4) << "global_work_size:[2D]:" << x_img_width << " " << x_img_height;
206
#endif
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
  }

 protected:
  param_t* ele_param_{nullptr};
  std::string kernel_func_name_{"elementwise_mul"};
  std::string build_options_{"-DCL_DTYPE_half"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(elementwise_mul,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     ocl::ElementwiseMulImageCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Y",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();