nearest_interp_image_compute.cc 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/backends/opencl/cl_half.h"
16 17 18 19 20 21
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
22 23 24 25
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/profiler.h"
#endif
#include "lite/backends/opencl/cl_utility.h"
26 27 28 29 30 31

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

32
class NearestInterpComputeImageDefault
33 34 35 36 37 38 39 40 41 42 43 44
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::InterpolateParam;

  std::string doc() const override {
    return "NearestInterp using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
45 46 47 48
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "image/nearest_interp_kernel.cl",
                                    build_options_,
                                    time_stamp_);
49
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
50 51 52 53 54
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
55
    const auto& y_dims = param.Out->dims();
56
    auto* x_img =
57 58
        param.X->data<half_t,
                      cl::Image2D>();  // use half_t represents half float
59
    auto out_image_shape = InitImageDimInfoWith(y_dims);
60
    auto* out_img = param.Out->mutable_data<half_t, cl::Image2D>(  // use half_t
61
        // represents half float
62 63 64
        out_image_shape["width"],
        out_image_shape["height"]);

65 66 67 68 69 70 71 72 73 74
    float scale_h = y_dims[2] / x_dims[2];
    float scale_w = y_dims[3] / x_dims[3];
    int in_dims_h = x_dims[2];
    int out_dims_h = y_dims[2];
    int in_dims_w = x_dims[3];
    int out_dims_w = y_dims[3];

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
75
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
76 77 78
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
79
    cl_int status = kernel.setArg(arg_idx, *x_img);
80
    CL_CHECK_FATAL(status);
81
    status = kernel.setArg(++arg_idx, *out_img);
82 83 84 85 86 87 88 89 90 91 92 93 94 95
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const float>(scale_h));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const float>(scale_w));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_dims_h));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_dims_h));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_dims_w));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_dims_w));
    CL_CHECK_FATAL(status);

96
#ifdef LITE_WITH_LOG
97 98
    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());
99 100
    VLOG(4) << "out_image_shape(w,h):" << out_image_shape["width"] << " "
            << out_image_shape["height"];
101 102 103 104
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];
105
#endif
106

107 108 109 110 111
    const std::vector<size_t>& default_work_size =
        DefaultWorkSize(y_dims,
                        DDim(std::vector<DDim::value_type>{
                            static_cast<int64_t>(out_image_shape["width"]),
                            static_cast<int64_t>(out_image_shape["height"])}));
112
    auto global_work_size =
113 114 115
        cl::NDRange{static_cast<cl::size_type>(default_work_size.data()[0]),
                    static_cast<cl::size_type>(default_work_size.data()[1]),
                    static_cast<cl::size_type>(default_work_size.data()[2])};
X
xiebaiyuan 已提交
116

117 118 119 120 121 122 123
    status = EnqueueNDRangeKernel(context,
                                  kernel,
                                  cl::NullRange,
                                  global_work_size,
                                  cl::NullRange,
                                  nullptr,
                                  event_);
124 125 126
    CL_CHECK_FATAL(status);
  }

127 128 129 130 131 132 133 134
#ifdef LITE_WITH_PROFILE
  void SetProfileRuntimeKernelInfo(paddle::lite::profile::OpCharacter* ch) {
    ch->kernel_func_name = kernel_func_name_;
    ch->cl_event =
        event_;  // `event_` defined in `kernel.h`, valid after kernel::Run
  }
#endif

135 136
 private:
  std::string kernel_func_name_{"nearest_interp"};
137
  std::string build_options_{" -DCL_DTYPE_half"};
138
  std::string time_stamp_{GetTimeStamp()};
139 140 141 142 143 144 145 146 147 148 149 150
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(
    nearest_interp,
    kOpenCL,
    kFP16,
    kImageDefault,
151
    paddle::lite::kernels::opencl::NearestInterpComputeImageDefault,
152 153 154 155 156 157 158 159 160 161
    ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();