selected_rows_functor.cc 15.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
16
#include <map>
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#include <set>

#include "lite/backends/x86/math/blas.h"
#include "lite/backends/x86/math/selected_rows_functor.h"

namespace paddle {
namespace lite {
namespace x86 {
namespace math {

template <typename T>
struct SelectedRowsAdd<lite::TargetType::kX86, T> {
  void operator()(const lite::X86Context& context,
                  const fluid::SelectedRows& input1,
                  const fluid::SelectedRows& input2,
                  fluid::SelectedRows* output) {
    auto in1_height = input1.height();
    PADDLE_ENFORCE_EQ(in1_height, input2.height());
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, in2_value.numel() / in2_rows.size());
    PADDLE_ENFORCE_EQ(in1_row_numel, out_value->numel() / out_rows.size());

H
huzhiqiang 已提交
55
    auto* out_data = out_value->template mutable_data<T>();
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    auto* in1_data = in1_value.data<T>();
    std::copy_n(in1_data, in1_value.numel(), out_data);

    auto* in2_data = in2_value.data<T>();
    std::copy_n(in2_data, in2_value.numel(), out_data + in1_value.numel());
  }
};

template struct SelectedRowsAdd<lite::TargetType::kX86, float>;
template struct SelectedRowsAdd<lite::TargetType::kX86, double>;

template <typename T>
struct SelectedRowsAddTensor<lite::TargetType::kX86, T> {
  void operator()(const lite::X86Context& context,
                  const fluid::SelectedRows& input1,
                  const lite::Tensor& input2,
                  lite::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);
    PADDLE_ENFORCE_EQ(in1_height, out_dims[0]);

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2.numel() / in1_height);
    PADDLE_ENFORCE_EQ(in1_row_numel, output->numel() / in1_height);

    SetConstant<lite::TargetType::kX86, T> functor;
    functor(context, output, 0.0);

    auto* in1_data = in1_value.data<T>();
H
huzhiqiang 已提交
90
    auto* out_data = output->template mutable_data<T>();
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        out_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }

    auto out_eigen = fluid::EigenVector<T>::Flatten(*output);
    auto in2_eigen = fluid::EigenVector<T>::Flatten(input2);
    out_eigen.device(lite::fluid::EigenDeviceType<TARGET(kX86)>()) =
        out_eigen + in2_eigen;
  }
};

template struct SelectedRowsAddTensor<lite::TargetType::kX86, float>;
template struct SelectedRowsAddTensor<lite::TargetType::kX86, double>;

template <typename T>
struct SelectedRowsAddTo<lite::TargetType::kX86, T> {
  void operator()(const lite::X86Context& context,
                  const fluid::SelectedRows& input1,
                  const int64_t input2_offset,
                  fluid::SelectedRows* input2) {
    auto in1_height = input1.height();
    PADDLE_ENFORCE_EQ(in1_height, input2->height());

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
    in2_rows.reserve(in2_rows.size() +
                     size_t(in1_rows.end() - in1_rows.begin()));
    in2_rows.insert(in2_rows.end(), in1_rows.begin(), in1_rows.end());

    auto* in1_data = in1_value.data<T>();
H
huzhiqiang 已提交
130
    auto* in2_data = in2_value->template mutable_data<T>();
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    std::copy_n(in1_data, in1_value.numel(), in2_data + input2_offset);
  }
};

template struct SelectedRowsAddTo<lite::TargetType::kX86, float>;
template struct SelectedRowsAddTo<lite::TargetType::kX86, double>;
template struct SelectedRowsAddTo<lite::TargetType::kX86, int>;
template struct SelectedRowsAddTo<lite::TargetType::kX86, int64_t>;

template <typename T>
struct SelectedRowsSumTo<lite::TargetType::kX86, T> {
  void operator()(const lite::X86Context& context,
                  const std::vector<fluid::SelectedRows*>& input1,
                  const std::vector<int64_t>& input2_offsets,
                  fluid::SelectedRows* input2) {
    // Ensure all selected rows have the same height
    size_t size = 0u;
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      auto& in_rows = (*iter)->rows();
      size += in_rows.end() - in_rows.begin();
      auto in1_height = (*iter)->height();
      PADDLE_ENFORCE_EQ(in1_height, input2->height());
    }
    // concat rows
    std::vector<int64_t> in2_rows;
    in2_rows.reserve(in2_rows.size() + size);
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      const std::vector<int64_t>& in_rows = (*iter)->rows();
      in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end());
    }
    input2->set_rows(in2_rows);

    auto* in2_value = input2->mutable_value();
H
huzhiqiang 已提交
164
    T* in2_data = in2_value->template mutable_data<T>();
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    auto blas = math::GetBlas<lite::TargetType::kX86, T>(context);
    size_t offset = 0u;
    for (size_t i = 0u; i != input1.size(); ++i) {
      auto& in_value = input1[i]->value();
      const T* in_data = in_value.data<T>();
      offset += input2_offsets[i];
      blas.VCOPY(in_value.numel(), in_data, in2_data + offset);
    }
  }
};

template struct SelectedRowsSumTo<lite::TargetType::kX86, float>;
template struct SelectedRowsSumTo<lite::TargetType::kX86, double>;

template <typename T>
struct SelectedRowsAddToTensor<lite::TargetType::kX86, T> {
  void operator()(const lite::X86Context& context,
                  const fluid::SelectedRows& input1,
                  lite::Tensor* input2) {
    CHECK(input1.rows().size() != 0) << "input selected rows is empty!";

    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);

    auto* in1_data = in1_value.data<T>();
H
huzhiqiang 已提交
197
    auto* input2_data = input2->template mutable_data<T>();
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

template struct SelectedRowsAddToTensor<lite::TargetType::kX86, float>;
template struct SelectedRowsAddToTensor<lite::TargetType::kX86, double>;
template struct SelectedRowsAddToTensor<lite::TargetType::kX86, int>;
template struct SelectedRowsAddToTensor<lite::TargetType::kX86, int64_t>;

// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace scatter {

template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, lite::X86Context>::value>::type
elementwise_add_to(const DeviceContext& ctx,
                   BlasT<lite::TargetType::kX86, T>* blas,
                   size_t data_len,
                   const T* in,
                   T* out) {
  blas->AXPY(data_len, 1., in, out);
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    !std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, lite::X86Context>::value>::type
elementwise_add_to(const DeviceContext& ctx,
                   BlasT<lite::TargetType::kX86, T>* blas,
                   size_t data_len,
                   const T* in,
                   T* out) {
  for (size_t i = 0; i < data_len; i++) {
    out[i] += in[i];
  }
}

template <typename T>
struct MergeAdd<lite::TargetType::kX86, T> {
  fluid::SelectedRows operator()(const lite::X86Context& context,
                                 const fluid::SelectedRows& input,
                                 const bool sorted_result = false) {
    fluid::SelectedRows out;
    (*this)(context, input, &out, sorted_result);
    return out;
  }

  void operator()(const lite::X86Context& context,
                  const fluid::SelectedRows& input,
                  fluid::SelectedRows* output,
                  const bool sorted_result = false) {
    std::vector<const fluid::SelectedRows*> inputs;
    inputs.push_back(&input);
    (*this)(context, inputs, output, sorted_result);
  }

  void operator()(const lite::X86Context& context,
                  const std::vector<const fluid::SelectedRows*>& inputs,
                  fluid::SelectedRows* output,
                  const bool sorted_result = false) {
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
    const fluid::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
282
      VLOG(3) << "no input has value! just return";
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
    fluid::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width,
                        input->value().dims()[1],
                        "all input should have same "
                        "dimension except for the first one");
      PADDLE_ENFORCE_EQ(
          input_height, input->height(), "all input should have same height");
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    out.set_height(input_height);
    lite::DDim dims(std::vector<int64_t>(
        {static_cast<int64_t>(merged_row_set.size()), input_width}));
    out.mutable_value()->Resize(dims);
H
huzhiqiang 已提交
308
    auto* out_data = out.mutable_value()->template mutable_data<T>();
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

    if (merged_row_set.size() == row_num && !sorted_result) {
      // no duplicated ids, just concat the result together
      std::vector<int64_t> merge_rows;
      merge_rows.reserve(row_num);
      // concat rows
      for (auto* in : inputs) {
        merge_rows.insert(
            merge_rows.end(), in->rows().begin(), in->rows().end());
      }
      out.set_rows(merge_rows);
      int64_t copied_numel = 0;
      for (auto* in : inputs) {
        auto* in_data = in->value().data<T>();
        auto in_numel = in->value().numel();
        std::copy_n(in_data, in_numel, out_data + copied_numel);
        copied_numel += in_numel;
      }
    } else {
      std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                      merged_row_set.end());

      if (sorted_result) {
332
        std::stable_sort(merge_rows.begin(), merge_rows.end());
333 334 335 336 337 338
      }

      out.set_rows(merge_rows);
      math::SetConstant<lite::TargetType::kX86, T> constant_functor;
      constant_functor(context, out.mutable_value(), 0.0);

339
      std::map<int64_t, size_t> rows_to_id;
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
      for (size_t i = 0; i < merge_rows.size(); ++i) {
        rows_to_id[merge_rows[i]] = i;
      }

      auto blas = math::GetBlas<lite::TargetType::kX86, T>(context);
      for (auto* input : inputs) {
        if (input->rows().size() == 0) {
          continue;
        }
        auto* input_data = input->value().data<T>();
        auto& input_rows = input->rows();

        for (size_t i = 0; i < input_rows.size(); i++) {
          size_t out_i = rows_to_id[input_rows[i]];
          elementwise_add_to<lite::X86Context, T>(
              context,
              &blas,
              static_cast<size_t>(input_width),
              &input_data[i * input_width],
              &out_data[out_i * input_width]);
        }
      }
    }
  }
};

template struct MergeAdd<lite::TargetType::kX86, int>;
template struct MergeAdd<lite::TargetType::kX86, int64_t>;
template struct MergeAdd<lite::TargetType::kX86, float>;
template struct MergeAdd<lite::TargetType::kX86, double>;

template <typename T>
struct UpdateToTensor<lite::TargetType::kX86, T> {
  void operator()(const lite::X86Context& context,
                  const ScatterOps& op,
                  const fluid::SelectedRows& input1,
                  lite::Tensor* input2) {
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);

    auto* in1_data = in1_value.data<T>();
H
huzhiqiang 已提交
388
    auto* input2_data = input2->template data<T>();
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

    // FIXME(typhoonzero): use macro fix the below messy code.
    switch (op) {
      case ScatterOps::ASSIGN:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::ADD:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUB:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] -=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUBBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] -
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
      case ScatterOps::MUL:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] *=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIV:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] /=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIVBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] /
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
    }
  }
};

}  // namespace scatter
}  // namespace math
}  // namespace x86
}  // namespace lite
}  // namespace paddle