sequence2batch.h 7.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <vector>
#include "lite/core/tensor.h"

namespace paddle {
namespace lite {
namespace arm {
namespace math {

template <typename T>
class CopyMatrixRowsFunctor {
 public:
  // If is_src_index is true,
  // copy the indexed rows of input src to the output dst.
  // If is_src_index is false,
  // copy the input src to the indexed rows of output dst.
  // The indexed rows are based on the input index.
  void operator()(const Tensor& src,
                  std::vector<uint64_t> index_lod,
                  Tensor* dst,
                  bool is_src_index) {
    auto index = index_lod.data();
    auto src_dims = src.dims();
    auto dst_dims = dst->dims();
    CHECK_EQ(src_dims.size(), 2UL) << "The src must be matrix with rank 2.";
    CHECK_EQ(dst_dims.size(), 2UL) << "The dst must be matrix with rank 2.";
    CHECK_EQ(src_dims[1], dst_dims[1])
        << "The width of src and dst must be same.";
    auto height = dst_dims[0];
    auto width = dst_dims[1];
    auto* src_data = src.data<T>();
    auto* dst_data = dst->mutable_data<T>();
    const int sz = width * sizeof(T);
    if (is_src_index) {
      for (int i = 0; i < height; ++i) {
        TargetCopy(TARGET(kARM),
                   dst_data + i * width,
                   src_data + index[i] * width,
                   sz);
      }
    } else {
      for (int i = 0; i < height; ++i) {
        TargetCopy(TARGET(kARM),
                   dst_data + index[i] * width,
                   src_data + i * width,
                   sz);
      }
    }
  }
};

template <typename T>
class LoDTensor2BatchFunctor {
  // Calculate the length of each sequence and
  // sort sequence index by the length.
  // example:  sequences = {s0, s1, s2}
  //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
  //           seq_info[3] = {(4, 5, 1), (0, 4, 0), (9, 3, 2)}
  //
  struct SeqInfo {
    SeqInfo(int start, int length, int seq_idx)
        : start(start), length(length), seq_idx(seq_idx) {}
    int start;
    int length;
    int seq_idx;
  };

 public:
  void operator()(const Tensor& lod_tensor,
                  Tensor* batch,
                  bool is_cal_batch_lod,
                  bool is_reverse = false) const {
    if (!is_cal_batch_lod) {
      auto lods = batch->lod();
      CHECK_GT(lods.size(), 2UL)
          << "The LoD of LoDTensor should inlcude at least 2-level "
             "sequence information.";
      CHECK_EQ(lods[1].size(), static_cast<size_t>(lod_tensor.dims()[0]))
          << "The LoD information should be consistent with the dims.";
      CopyMatrixRowsFunctor<T> to_batch;
      to_batch(lod_tensor, lods[1], batch, true);
      return;
    }

    auto lods = lod_tensor.lod();
    CHECK_EQ(lods.size(), 1UL) << "Only support one level sequence now.";

    const auto& lod = lods[0];

    std::vector<SeqInfo> seq_info;
    for (size_t seq_id = 0; seq_id < lod.size() - 1; ++seq_id) {
      int length = lod[seq_id + 1] - lod[seq_id];
      seq_info.emplace_back(lod[seq_id], length, seq_id);
    }

112 113 114
    std::stable_sort(seq_info.begin(),
                     seq_info.end(),
                     [](SeqInfo a, SeqInfo b) { return a.length > b.length; });
Y
Yan Chunwei 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

    // Calculate the start position of each batch.
    // example:  sequences = {s0, s1, s2}
    //           s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
    //           max_seqlen = 5,
    //           batchIndex = {b0, b1, b2, b3, b4}
    //           b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1
    //           batch_start_positions[6] = {0, 3, 6, 9, 11, 12}
    //              batch_start_positions[0] = len(b0)
    //              batch_start_positions[1] = len(b0) + len(b1)
    //              batch_start_positions[2] = len(b0) + len(b1) + len(b2)
    //              ...
    //           seq2batch_idx[12] = {4, 0, 9,
    //                                5, 1, 10,
    //                                6, 2, 11,
    //                                7, 3,
    //                                8}
    //           seq_order = {1, 0, 2}, the sort order.
    //               where 1 is the second sequence,
    //                     0 is the first sequence,
    //                     2 is the third sequence.
    // The max_seqlen represents batch size after rearranging the
    // input LodTensor. It is also the maximum length of input sequence.

    LoD batch_lods;
    batch_lods.emplace_back(std::vector<uint64_t>{0});
    batch_lods.emplace_back(std::vector<uint64_t>{0});
    batch_lods.emplace_back(std::vector<uint64_t>{0});

    // batch_lods[0] is the start positions for batch LoDTensor
    int max_seqlen = seq_info[0].length;
    batch_lods[0].resize(static_cast<size_t>(max_seqlen + 1));
    // batch_lods[1] is the raw index in the input LoDTensor
    batch_lods[1].resize(static_cast<size_t>(lod_tensor.dims()[0]));
    // batch_lods[2] is the sort order for the input LoDTensor.
    batch_lods[2].resize(seq_info.size());

    auto batch_starts = batch_lods[0].data();
    auto seq2batch_idx = batch_lods[1].data();
    batch_starts[0] = 0;
    for (int n = 0; n < max_seqlen; n++) {
      auto batch_id = static_cast<int>(batch_starts[n]);
      for (size_t i = 0; i < seq_info.size(); ++i) {
        int seq_len = seq_info[i].length;
        int start = seq_info[i].start;
        if (n < seq_len) {
          seq2batch_idx[batch_id] =
              is_reverse ? start + seq_len - 1 - n : start + n;
          batch_id++;
        } else {
          break;
        }
      }
      batch_starts[n + 1] = static_cast<size_t>(batch_id);
    }
    auto seq_order = batch_lods[2].data();
    for (size_t i = 0; i < seq_info.size(); ++i) {
      seq_order[i] = seq_info[i].seq_idx;
    }
    *(batch->mutable_lod()) = batch_lods;

    CopyMatrixRowsFunctor<T> to_batch;
    to_batch(lod_tensor, batch_lods[1], batch, true);
  }
};

template <typename T>
class Batch2LoDTensorFunctor {
 public:
  void operator()(const Tensor& batch, Tensor* lod_tensor) const {
    auto in_lod = batch.lod();
    CHECK_GT(in_lod.size(), 2UL)
        << "The LoD of LoDTensor should inlcude at least 2-level "
           "sequence information.";
    CHECK_EQ(in_lod[1].size(), static_cast<size_t>(lod_tensor->dims()[0]))
        << "The LoD information should be consistent with the dims.";
    CopyMatrixRowsFunctor<T> to_seq;
    to_seq(batch, in_lod[1], lod_tensor, false);
  }
};

template <typename T>
inline void ReorderInitState(const Tensor& src,
                             const std::vector<uint64_t>& index_lod,
                             Tensor* dst,
                             bool indexed_src) {
  CopyMatrixRowsFunctor<T> row_shuffle;
  dst->Resize(src.dims());
  dst->mutable_data<T>();
  row_shuffle(src, index_lod, dst, indexed_src);
}

}  // namespace math
}  // namespace arm
}  // namespace lite
}  // namespace paddle