beam_search_decode_compute.cc 11.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/beam_search_decode_compute.h"
#include <algorithm>
#include <vector>
#include "lite/api/paddle_place.h"
19
#include "lite/backends/arm/math/funcs.h"
Y
Yan Chunwei 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

using LoDTensor = lite::Tensor;
using LoDTensorArray = std::vector<lite::Tensor>;

// all the lod have 2 levels.
// The first is source level, the second is sentence level.
// source level describe how many prefixes (branchs) for each source sentece
// (beam). sentence level describe how these candidates belong to the prefixes.
const size_t kSourceLevel = 0;
const size_t kSentenceLevel = 1;

template <typename T>
struct Sentence {
  std::vector<float> word_ids;
  std::vector<T> scores;
};

template <typename T>
using SentenceVector = std::vector<Sentence<T>>;

template <typename T>
struct BeamSearchDecoder {
  BeamSearchDecoder(size_t beam_size, int end_id)
      : beam_size_(beam_size), end_id_(end_id) {}

  /**
   * convert the result sentence_vector for each source sentence into two
   * LodTensor.
   * One is all candidate sentences with word id, one is all candidate sentences
   * with word score.
   * Param:
   *  sentence_vector_list: sentence_vector for each source sentence.
   *  id_tensor: result LoDTensor for sentences of id.
   *  score_tensor: result LoDTensor for sentences of score.
   *  reverse: whether ids of sentence in sentence_vector_list is reversed
   *  sort_by_score: whether to sort hypotheses of each sentence by scores.
   */
  void ConvertSentenceVectorToLodTensor(
      std::vector<SentenceVector<T>> sentence_vector_list,
      LoDTensor* id_tensor,
      LoDTensor* score_tensor,
      bool reverse = true,
      bool sort_by_score = true) const {
    size_t src_num = sentence_vector_list.size();
    CHECK_GT(src_num, 0) << "src_num should not be 0";

    std::vector<uint64_t> source_level_lod = {0};
    std::vector<uint64_t> sentence_level_lod = {0};
    std::vector<float> id_data;
    std::vector<T> score_data;

    for (size_t src_idx = 0; src_idx < src_num; ++src_idx) {
      if (sort_by_score) {
        sort(sentence_vector_list[src_idx].begin(),
             sentence_vector_list[src_idx].end(),
             [reverse](const Sentence<T>& a, const Sentence<T>& b) {
               if (reverse)
                 return a.scores.front() > b.scores.front();
               else
                 return a.scores.back() > b.scores.back();
             });
      }
      for (Sentence<T>& sentence : sentence_vector_list[src_idx]) {
        if (reverse) {
          id_data.insert(id_data.end(),
                         sentence.word_ids.rbegin(),
                         sentence.word_ids.rend());
          score_data.insert(score_data.end(),
                            sentence.scores.rbegin(),
                            sentence.scores.rend());
        } else {
          id_data.insert(id_data.end(),
                         sentence.word_ids.begin(),
                         sentence.word_ids.end());
          score_data.insert(
              score_data.end(), sentence.scores.begin(), sentence.scores.end());
        }

        sentence_level_lod.push_back(sentence_level_lod.back() +
                                     sentence.word_ids.size());
      }
      source_level_lod.push_back(source_level_lod.back() +
                                 sentence_vector_list[src_idx].size());
    }

    LoD lod;
    lod.push_back(source_level_lod);
    lod.push_back(sentence_level_lod);

    *(id_tensor->mutable_lod()) = lod;

    id_tensor->Resize({static_cast<int64_t>(id_data.size())});
    auto id_ptr = id_tensor->mutable_data<float>();
    TargetCopy(
        TARGET(kARM), id_ptr, id_data.data(), id_data.size() * sizeof(float));

    *(score_tensor->mutable_lod()) = lod;
    score_tensor->Resize({static_cast<int64_t>(score_data.size())});
    auto score_ptr = score_tensor->mutable_data<T>();
    TargetCopy(TARGET(kARM),
               score_ptr,
               score_data.data(),
               score_data.size() * sizeof(T));
  }

  /**
   * Gather the hypotheses for each source sentence by backtrace though the
   * LoDTensorArray step_ids whose lods reserve the path in the tree.
   */
  void Backtrace(const LoDTensorArray& step_ids,
                 const LoDTensorArray& step_scores,
                 LoDTensor* id_tensor,
                 LoDTensor* score_tensor) const {
    CHECK(!step_ids.empty()) << "step num should be larger than 0";
    CHECK_EQ(step_ids.size(), step_scores.size())
        << "step_ids and step_scores should be the same";
    const size_t step_num = step_ids.size();
    const size_t src_num = step_ids.at(0).lod().at(kSourceLevel).size() - 1;
    std::vector<SentenceVector<T>> sentence_vector_list(
        src_num, SentenceVector<T>(beam_size_));
    std::vector<std::vector<size_t>> prefix_idx_vector_list(src_num);
    for (int step_id = step_num - 1; step_id >= 0; --step_id) {
      auto& cur_ids = step_ids.at(step_id);
      auto& cur_scores = step_scores.at(step_id);
      for (size_t src_idx = 0; src_idx < src_num; ++src_idx) {
        // for each source sentence
        auto& sentence_vector = sentence_vector_list.at(src_idx);
        auto& prefix_idx_vector = prefix_idx_vector_list.at(src_idx);
        size_t src_prefix_start = cur_ids.lod().at(kSourceLevel)[src_idx];
        size_t src_prefix_end = cur_ids.lod().at(kSourceLevel)[src_idx + 1];
        if (prefix_idx_vector.empty()) {  // be finished and pruned at this step
          // or the last time step
          for (size_t prefix_idx = src_prefix_start;
               prefix_idx < src_prefix_end;
               ++prefix_idx) {
            size_t candidate_start =
                cur_ids.lod().at(kSentenceLevel)[prefix_idx];
            size_t candidate_end =
                cur_ids.lod().at(kSentenceLevel)[prefix_idx + 1];
            for (size_t candidate_idx = candidate_start;
                 candidate_idx < candidate_end;
                 ++candidate_idx) {
              prefix_idx_vector.push_back(prefix_idx);
              size_t idx = prefix_idx_vector.size() - 1;
              auto cur_id = cur_ids.data<float>()[candidate_idx];
              auto cur_score = cur_scores.data<T>()[candidate_idx];
              sentence_vector.at(idx).word_ids.push_back(cur_id);
              sentence_vector.at(idx).scores.push_back(cur_score);
            }
          }
        } else {  // use prefix_idx_vector to backtrace
          size_t src_candidate_start =
              cur_ids.lod().at(kSentenceLevel)[src_prefix_start];
          size_t prefix_idx = src_prefix_start;
          size_t candidate_num =
              cur_ids.lod().at(kSentenceLevel)[prefix_idx + 1] -
              cur_ids.lod().at(kSentenceLevel)[prefix_idx];
          for (size_t idx = 0; idx < prefix_idx_vector.size(); ++idx) {
            auto candidate_idx = prefix_idx_vector.at(idx);
            auto cur_id = cur_ids.data<float>()[candidate_idx];
            auto cur_score = cur_scores.data<T>()[candidate_idx];
            if (cur_id != end_id_ || sentence_vector.at(idx).word_ids.empty()) {
              // to skip redundant end tokens
              sentence_vector.at(idx).word_ids.push_back(cur_id);
              sentence_vector.at(idx).scores.push_back(cur_score);
            }

            while (src_candidate_start + candidate_num <=
                   candidate_idx) {  // search the corresponding prefix
              prefix_idx++;
              candidate_num +=
                  cur_ids.lod().at(kSentenceLevel)[prefix_idx + 1] -
                  cur_ids.lod().at(kSentenceLevel)[prefix_idx];
            }
            prefix_idx_vector.at(idx) = prefix_idx;
          }
        }
      }
    }

    ConvertSentenceVectorToLodTensor(
        sentence_vector_list, id_tensor, score_tensor, true, true);
  }

  size_t beam_size_;
  int end_id_;
};

struct BeamSearchDecodeFunctor {
  BeamSearchDecodeFunctor(const LoDTensorArray& step_ids,
                          const LoDTensorArray& step_scores,
                          LoDTensor* id_tensor,
                          LoDTensor* score_tensor,
                          size_t beam_size,
                          int end_id)
      : beam_size_(beam_size),
        end_id_(end_id),
        step_ids_(step_ids),
        step_scores_(step_scores),
        id_tensor_(id_tensor),
        score_tensor_(score_tensor) {}

  template <typename T>
  void apply() const {
    BeamSearchDecoder<T> beam_search_decoder(beam_size_, end_id_);
    beam_search_decoder.Backtrace(
        step_ids_, step_scores_, id_tensor_, score_tensor_);
  }

  size_t beam_size_;
  int end_id_;
  const LoDTensorArray& step_ids_;
  const LoDTensorArray& step_scores_;
  LoDTensor* id_tensor_;
  LoDTensor* score_tensor_;
};

template <>
void BeamSearchDecodeFunctor::apply<bool>() const {
  LOG(FATAL) << "beam search decode op does not support bool!";
}

void BeamSearchDecodeCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  // inputs
  auto ids = param.ids;
  auto scores = param.scores;
  // outputs
  auto sentence_ids = param.sentence_ids;
  auto sentence_scores = param.sentence_scores;

  const size_t step_num = ids->size();
  CHECK_GT(step_num, 0UL) << "beam search steps should be larger than 0";
  const size_t source_num = ids->at(0).lod().at(0).size() - 1;
  CHECK_GT(source_num, 0UL) << "source num should be larger than 0";

  for (size_t i = 0; i < step_num; ++i) {
    CHECK_EQ(ids->at(i).lod().size(), 2UL) << "Level of LodTensor should be 2";
  }

  //! fixme
  // only support float score now
  BeamSearchDecodeFunctor func(*ids,
                               *scores,
                               sentence_ids,
                               sentence_scores,
                               param.beam_size,
                               param.end_id);

  func.apply<float>();
T
TianXiaogang 已提交
279 280 281 282

  // when decode finish, we clear ids and scores
  param.ids->clear();
  param.scores->clear();
Y
Yan Chunwei 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(beam_search_decode,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::BeamSearchDecodeCompute,
                     def)
    .BindInput("Ids", {LiteType::GetTensorListTy(TARGET(kARM))})
    .BindInput("Scores", {LiteType::GetTensorListTy(TARGET(kARM))})
    .BindOutput("SentenceIds", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("SentenceScores", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();