transform_test.cc 8.4 KB
Newer Older
T
TianXiaogang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <string>
#include <vector>
#include "lite/api/cxx_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/core/op_registry.h"

DEFINE_string(input, "", "input_data");
DEFINE_int32(batch, 1, "batch");

namespace paddle {
namespace lite {
namespace test_transformer {

std::vector<std::string> inputed_lines;

void LoadInputLines(const char* filename) {
  static const int max_line_buf_size = 100 * 1024 * 1024;
  char* line_buffer = (char*)calloc(max_line_buf_size, sizeof(char));  // NOLINT
  FILE* input_file = fopen(filename, "r");

  while (fgets(line_buffer, max_line_buf_size, input_file)) {
    // trim newline at end
    char* pos = NULL;
    if ((pos = strchr(line_buffer, '\n')) != NULL) {
      *pos = 0;
    }
    inputed_lines.push_back(line_buffer);
  }
  free(line_buffer);
  line_buffer = NULL;
  fclose(input_file);
}
void Split2(const std::string& main_str,
            std::vector<std::string>& str_list,  // NOLINT
            const std::string& delimiter) {
  size_t pre_pos = 0;
  size_t position = 0;
  std::string tmp_str;

  str_list.clear();
  if (main_str.empty()) {
    return;
  }

  while ((position = main_str.find(delimiter, pre_pos)) != std::string::npos) {
    tmp_str.assign(main_str, pre_pos, position - pre_pos);
    str_list.push_back(tmp_str);
    pre_pos = position + 1;
  }

  tmp_str.assign(main_str, pre_pos, main_str.length() - pre_pos);

  if (!tmp_str.empty()) {
    str_list.push_back(tmp_str);
  }
}
}  // NOLINT

void PadBatchInput(std::vector<std::string>& input_lines,  // NOLINT
                   int pad_idx,
                   int n_head,
                   Tensor* src_word,
                   Tensor* src_pos,
                   Tensor* src_attn_bias,
                   Tensor* trg_word,
                   Tensor* init_scores,
                   Tensor* init_idx,
                   Tensor* trg_bias,
                   int line_start,
                   int batch_size,
                   int bos_idx) {
  int max_len = 0;
  int max_line = input_lines.size();

  std::vector<std::vector<std::string>> batch_lines;
  for (int i = line_start; i < line_start + batch_size; ++i) {
    int i_index = i % max_line;
    std::string cur_line = input_lines[i_index];

    std::vector<std::string> split_str;

    test_transformer::Split2(cur_line, split_str, " ");

    batch_lines.push_back(split_str);
    max_len = max_len >= split_str.size() ? max_len : split_str.size();
  }

  src_word->Resize(std::vector<DDim::value_type>({batch_size, max_len, 1}));
  src_pos->Resize(std::vector<DDim::value_type>({batch_size, max_len, 1}));
  src_attn_bias->Resize(
      std::vector<DDim::value_type>({batch_size, n_head, max_len, max_len}));
  trg_bias->Resize(
      std::vector<DDim::value_type>({batch_size, n_head, 1, max_len}));
  float* src_word_data = src_word->mutable_data<float>();
  float* src_pos_data = src_pos->mutable_data<float>();
  float* src_bias_data = src_attn_bias->mutable_data<float>();
  float* trg_bias_data = trg_bias->mutable_data<float>();
  for (int i = 0; i < batch_size; ++i) {
    std::vector<std::string> cur_words = batch_lines[i];
    int fill_len = cur_words.size();
    int src_bias_start = i * n_head * max_len * max_len;
    int trg_bias_start = i * n_head * max_len;
    for (int j = 0; j < fill_len; ++j) {
      src_word_data[i * max_len + j] = (atoi(cur_words[j].c_str()));
      src_pos_data[i * max_len + j] = j;
      src_bias_data[src_bias_start + j] = 0;
      trg_bias_data[trg_bias_start + j] = 0;
    }
    for (int j = fill_len; j < max_len; ++j) {
      src_word_data[i * max_len + j] = pad_idx;
      src_pos_data[i * max_len + j] = 0;
      src_bias_data[src_bias_start + j] = -1000000000;
      trg_bias_data[trg_bias_start + j] = -1000000000;
    }
    for (int j = src_bias_start;
         j < src_bias_start + n_head * max_len * max_len;
         ++j) {
      int value_ind = j % max_len + src_bias_start;
      src_bias_data[j] = src_bias_data[value_ind];
    }
    for (int j = trg_bias_start; j < trg_bias_start + n_head * max_len; ++j) {
      int value_ind = j % max_len + trg_bias_start;
      trg_bias_data[j] = trg_bias_data[value_ind];
    }
  }

  trg_word->Resize(std::vector<DDim::value_type>({batch_size, 1, 1}));
  auto* trg_word_data = trg_word->mutable_data<float>();
  for (int i = 0; i < batch_size; ++i) {
    trg_word_data[i] = bos_idx;
  }

  init_scores->Resize(std::vector<DDim::value_type>({batch_size, 1}));
  init_idx->Resize(std::vector<DDim::value_type>({batch_size}));
  float* score_data = init_scores->mutable_data<float>();
  float* idx_data = init_idx->mutable_data<float>();
  for (int i = 0; i < init_scores->numel(); ++i) {
    score_data[i] = 0;
  }
  std::vector<std::vector<uint64_t>> lod_s;
  lod_s.resize(2);
  for (int i = 0; i < batch_size; ++i) {
    lod_s[0].push_back(i);
    lod_s[1].push_back(i);
    idx_data[i] = i;
  }
  lod_s[0].push_back(batch_size);
  lod_s[1].push_back(batch_size);
  auto score_lod = init_scores->mutable_lod();
  *score_lod = lod_s;

  auto trg_word_lod = trg_word->mutable_lod();
  *trg_word_lod = lod_s;
}

void TestModel(const std::vector<Place>& valid_places,
               const Place& preferred_place,
               bool use_npu = false) {
  DeviceInfo::Init();
  DeviceInfo::Global().SetRunMode(lite_api::LITE_POWER_HIGH, FLAGS_threads);
  lite::Predictor predictor;
  std::string test_data_path = FLAGS_input;

  predictor.Build(FLAGS_model_dir, "", "", preferred_place, valid_places);

  int n_head = 8;
  int batch_size = FLAGS_batch;
  int bos_idx = 0;
  int eos_idx = 1;
  LOG(INFO) << "reading";

  test_transformer::LoadInputLines(test_data_path.c_str());
  LOG(INFO) << "reading finished";

  auto* trg_bias = predictor.GetInput(6);
  auto* src_word = predictor.GetInput(0);
  auto* src_pos = predictor.GetInput(1);
  auto* src_bias = predictor.GetInput(2);
  auto* trg_word = predictor.GetInput(3);
  auto* init_score = predictor.GetInput(4);
  auto* init_idx = predictor.GetInput(5);

  for (int i = 0; i < FLAGS_warmup; ++i) {
    predictor.Run();
  }

  auto start = GetCurrentUS();
  for (int i = 0; i < FLAGS_repeats; ++i) {
    auto start_i = GetCurrentUS();
    PadBatchInput(test_transformer::inputed_lines,
                  eos_idx,
                  n_head,
                  src_word,    // src_word
                  src_pos,     // src_pos
                  src_bias,    // src_bias
                  trg_word,    // trg_word
                  init_score,  // init_score
                  init_idx,    // init_idx
                  trg_bias,    // trg_bias
                  i * batch_size,
                  batch_size,
                  bos_idx);
    LOG(INFO) << "src_word:" << src_word->dims();
    auto start_ii = GetCurrentUS();
    LOG(INFO) << i << "->ii:" << (start_ii - start_i) / 1000.0;
    predictor.Run();
    auto start_iii = GetCurrentUS();
    LOG(INFO) << i << "->iii:" << (start_iii - start_ii) / 1000.0;
    auto* outs = predictor.GetOutputs();
    LOG(INFO) << "out:" << (*outs)[0].dims();
  }

  LOG(INFO) << "================== Speed Report ===================";
  LOG(INFO) << "Model: " << FLAGS_model_dir << ", threads num " << FLAGS_threads
            << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats
            << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0
            << " ms in average.";

  auto* outs = predictor.GetOutputs();
  for (auto out : *outs) {
    LOG(INFO) << "======"
              << "here";
    LOG(INFO) << out;
  }
  LOG(INFO) << "======"
            << "hereggg";
}

TEST(OcrAttention, test_arm) {
  std::vector<Place> valid_places({
      Place{TARGET(kHost), PRECISION(kFloat)},
      Place{TARGET(kARM), PRECISION(kFloat)},
  });

  TestModel(valid_places, Place({TARGET(kARM), PRECISION(kFloat)}));
}

}  // namespace lite
}  // namespace paddle