conv_op.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/backends/xpu/builder.h"
#include "lite/kernels/xpu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace xpu {
namespace bridges {

node_map_type ConvConverter(const std::shared_ptr<lite::OpLite> op,
                            graph_ctx_type* graph_ctx,
                            const node_map_type& input_nodes) {
  auto scope = op->scope();
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto unique_op_type = lite::xpu::UniqueName(op_type);
  LOG(INFO) << "[XPU] Converting " << op_type << "... ";

  // get input, filter and op attributes
  auto input_var_name = op_info->Input("Input").front();
  auto input = scope->FindVar(input_var_name)->GetMutable<lite::Tensor>();
  auto input_dims = input->dims();
  auto filter_var_name = op_info->Input("Filter").front();
  auto filter = scope->FindVar(filter_var_name)->GetMutable<lite::Tensor>();
  auto filter_dims = filter->dims();
  auto bs = input_dims[0];
  auto oc = filter_dims[0];
  CHECK_EQ(input_dims.size(), 4);
  CHECK_EQ(filter_dims.size(), 4);
  auto strides = op_info->GetAttr<std::vector<int>>("strides");
  auto paddings = op_info->GetAttr<std::vector<int>>("paddings");
  auto groups = op_info->GetAttr<int>("groups");
  auto dilations = op_info->GetAttr<std::vector<int>>("dilations");
  auto fuse_relu = op_info->GetAttr<bool>("fuse_relu");
H
HappyAngel 已提交
49 50 51
  CHECK_EQ(strides.size(), 2L);
  CHECK_EQ(paddings.size(), 4L);
  CHECK_EQ(dilations.size(), 2L);
52 53 54 55
  std::vector<int64_t> output_shape({bs, oc});
  for (size_t i = 0; i < 2; i++) {
    const int dkernel = dilations[i] * (filter_dims[2 + i] - 1) + 1;
    output_shape.push_back(
H
HappyAngel 已提交
56 57 58
        (input_dims[i + 2] + paddings[2 * i] + paddings[2 * i + 1] - dkernel) /
            strides[i] +
        1);
59 60 61
  }
  DDim output_dims(output_shape);

H
HappyAngel 已提交
62 63 64 65 66 67
  bool pads_equal =
      (paddings[0] == paddings[1]) && (paddings[2] == paddings[3]);
  if (!pads_equal) {
    LOG(FATAL) << "Padding requies pad_top==pad_bottom and pad_lef==pad_right.";
  }

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  // check context
  CHECK(graph_ctx != nullptr);
  CHECK(graph_ctx->builder != nullptr);
  CHECK(graph_ctx->params != nullptr);

  // create filter node
  CHECK(!input_nodes.count(filter_var_name));
  auto filter_const_node = std::make_shared<xtcl::xExpr>(
      graph_ctx->builder->CreateTensor(filter_var_name,
                                       lite::xpu::CvtShape(filter_dims),
                                       ::xtcl::Float(32)));
  auto filter_const_tensor = lite::xpu::CvtTensor(filter);
  graph_ctx->params->emplace(
      std::make_pair(filter_var_name, *filter_const_tensor));

  // create conv node and set input, filter, bias nodes and attributes
  auto conv_attrs = xtcl::make_node<xtcl::network::Conv2DAttrs>();
  conv_attrs->strides = std::move(lite::xpu::CvtShape(strides));
  conv_attrs->padding = std::move(lite::xpu::CvtShape(paddings));
  conv_attrs->dilation = std::move(lite::xpu::CvtShape(dilations));
  conv_attrs->groups = groups;
  // conv_attrs->channels = nullptr;
  conv_attrs->kernel_size = std::move(xtcl::Array<xtcl::xIndexExpr>(nullptr));
  conv_attrs->data_layout = "NCHW";
  conv_attrs->kernel_layout = "OIHW";
  conv_attrs->out_layout = "";
  // conv_attrs->out_dtype = "";
  CHECK(input_nodes.count(input_var_name));
  auto conv_node =
      std::make_shared<xtcl::xExpr>(graph_ctx->builder->CreateConv2D(
          *input_nodes.at(input_var_name), *filter_const_node, conv_attrs));
  graph_ctx->builder->SetLayer(unique_op_type);

  // create bias node if has bias
  // supports the bias nodes with the following dimensions
  // 0: {oc}
  // 1: {1, oc, oh, ow}
  // 2: {n, oc, oh, ow}
  if (lite::xpu::HasInputArg(op_info, scope, "Bias")) {
    auto bias_var_name = op_info->Input("Bias").front();
    auto* bias = scope->FindVar(bias_var_name)->GetMutable<lite::Tensor>();
    auto bias_dims = bias->dims();
    auto bias_data_size = bias_dims.production();
    auto output_data_size = output_dims.production();
    std::vector<int64_t> bias_shape;
    bool is_channel_bias = false;
    if (bias_data_size == oc) {
      // 0: {oc}
      bias_shape = {oc};
      is_channel_bias = true;
    } else if (bias_data_size == output_data_size / bs) {
      // 1: {1, oc, oh, ow}
      bias_shape = {1, output_dims[1], output_dims[2], output_dims[3]};
    } else if (bias_data_size == output_data_size) {
      // 2: {n, oc, oh, ow}
      bias_shape = output_dims.Vectorize();
    } else {
      LOG(ERROR) << "bias dimension " << bias_dims
                 << " isn't supported in conv2d Op when output dimension is "
                 << output_dims;
    }
    std::shared_ptr<xtcl::xExpr> bias_node = nullptr;
    if (input_nodes.count(bias_var_name)) {
      // bias node from input node
      bias_node = input_nodes.at(bias_var_name);
    } else {
      // bias node with const tensor
      auto bias_const_node = std::make_shared<xtcl::xExpr>(
          graph_ctx->builder->CreateTensor(bias_var_name,
                                           lite::xpu::CvtShape(bias_shape),
                                           ::xtcl::Float(32)));
      auto bias_const_tensor = lite::xpu::CvtTensor(bias, bias_shape);
      graph_ctx->params->emplace(
          std::make_pair(bias_var_name, *bias_const_tensor));
      bias_node = bias_const_node;
    }
    std::shared_ptr<xtcl::xExpr> add_node = nullptr;
    if (is_channel_bias) {
      add_node = std::make_shared<xtcl::xExpr>(
147
          graph_ctx->builder->CreateBiasAdd(*conv_node, 1, *bias_node));
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    } else {
      add_node = std::make_shared<xtcl::xExpr>(
          graph_ctx->builder->CreateBinaryOp("add", *conv_node, *bias_node));
    }
    graph_ctx->builder->SetLayer(unique_op_type + "/add");
    conv_node = add_node;
  }

  // output converted nodes
  node_map_type output_nodes;
  if (fuse_relu) {
    // append relu node if fuse_relu is true
    auto relu_node = std::make_shared<xtcl::xExpr>(
        graph_ctx->builder->CreateRelu(*conv_node));
    graph_ctx->builder->SetLayer(unique_op_type + "/relu");
    output_nodes[op_info->Output("Output").front()] = relu_node;
  } else {
    output_nodes[op_info->Output("Output").front()] = conv_node;
  }
  return output_nodes;
}

}  // namespace bridges
}  // namespace xpu
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_XPU_BRIDGE(conv2d, paddle::lite::kernels::xpu::bridges::ConvConverter);
REGISTER_XPU_BRIDGE(depthwise_conv2d,
                    paddle::lite::kernels::xpu::bridges::ConvConverter);