im2col.cpp 22.2 KB
Newer Older
Z
zhaojiaying01 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
朔-望's avatar
朔-望 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhaojiaying01 已提交
15
#include "operators/math/im2col.h"
Z
zhaojiaying01 已提交
16
#include <vector>
E
eclipsess 已提交
17
#ifdef __ARM_NEON
E
eclipsess 已提交
18
#include "arm_neon.h"
E
eclipsess 已提交
19
#endif
朔-望's avatar
朔-望 已提交
20 21
#include "common/types.h"
namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
22 23
namespace operators {
namespace math {
朔-望's avatar
朔-望 已提交
24

朔-望's avatar
朔-望 已提交
25 26 27 28 29 30
/*
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height,
 * output_width]
 */
朔-望's avatar
朔-望 已提交
31 32 33
template <class T>
class Im2ColFunctor<ColFormat::kCFO, CPU, T> {
 public:
34 35 36 37 38
  void operator()(const framework::Tensor &im, const std::vector<int> &dilation,
                  const std::vector<int> &stride,
                  const std::vector<int> &padding, framework::Tensor *col) {
    //    PADDLE_ENFORCE(im.dims().size() == 3);
    //    PADDLE_ENFORCE(col->dims().size() == 5);
朔-望's avatar
朔-望 已提交
39

40 41 42 43 44 45 46
    int im_channels = im.dims()[0];
    int im_height = im.dims()[1];
    int im_width = im.dims()[2];
    int filter_height = col->dims()[1];
    int filter_width = col->dims()[2];
    int col_height = col->dims()[3];
    int col_width = col->dims()[4];
朔-望's avatar
朔-望 已提交
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    //    PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2]
    //    -
    //                       ((dilation[0] * (filter_height - 1)
    //                       + 1))) /
    //                              stride[0] +
    //                          1,
    //                      col_height,
    //                      "Output_height and
    //                      padding(padding_up, padding_down)
    //                      are " "inconsistent.");
    //    PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3]
    //    -
    //                       ((dilation[1] * (filter_width - 1)
    //                       + 1))) /
    //                              stride[1] +
    //                          1,
    //                      col_width,
    //                      "Output_height and
    //                      padding(padding_up, padding_down)
    //                      are " "inconsistent.");
朔-望's avatar
朔-望 已提交
68

69 70 71
    int channels_col = im_channels * filter_height * filter_width;
    const T *im_data = im.data<T>();
    T *col_data = col->data<T>();
E
eclipsess 已提交
72
#ifdef __ARM_NEON
E
eclipsess 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    const int osize = col_height;
    const int isize = im_height;
    bool pad1 = padding[0] > 0;
    bool pad2 =
        (pad1 &&
         (((isize - 2 * padding[0] + filter_height) % stride[0] == 0) ? 1 : 0));
    int fill = isize % 2;
    if (stride[0] == 1 && filter_height == 3 && pad1 && pad2 &&
        dilation[0] == 1) {
      for (int c = 0; c < im_channels; ++c) {
        int oosize = osize * osize;
        int nk4 = osize / 4;
        int mk4 = osize % 4;

        float *col0 = col_data + 0 * oosize + 2 * osize + 2;
        float *col1 = col_data + 1 * oosize + 2 * osize + 1;
        float *col2 = col_data + 2 * oosize + 2 * osize;

        float *col3 = col_data + 3 * oosize + osize + 2;
        float *col4 = col_data + 4 * oosize + osize + 1;
        float *col5 = col_data + 5 * oosize + osize;

        float *col6 = col_data + 6 * oosize + 2;
        float *col7 = col_data + 7 * oosize + 1;
        float *col8 = col_data + 8 * oosize;

        float32x4_t im1;
        const float *im_tmp_data = im_data + osize + 1;

        int rrsize = oosize - osize - 1;
        int nr4 = rrsize / 4;
        int mr4 = rrsize % 4;
        for (int i = 0; i < nr4; ++i) {
          im1 = vld1q_f32(im_tmp_data);
          vst1q_f32(col0, im1);
          vst1q_f32(col1, im1);
          vst1q_f32(col2, im1);
          vst1q_f32(col3, im1);
          vst1q_f32(col4, im1);
          vst1q_f32(col5, im1);
          vst1q_f32(col6, im1);
          vst1q_f32(col7, im1);
          vst1q_f32(col8, im1);

          col0 += 4;
          col1 += 4;
          col2 += 4;
          col3 += 4;
          col4 += 4;
          col5 += 4;
          col6 += 4;
          col7 += 4;
          col8 += 4;

          im_tmp_data += 4;
        }
        for (int i = 0; i < mr4; ++i) {
          *col0 = *im_tmp_data;
          *col1 = *im_tmp_data;
          *col2 = *im_tmp_data;
          *col3 = *im_tmp_data;
          *col4 = *im_tmp_data;
          *col5 = *im_tmp_data;
          *col6 = *im_tmp_data;
          *col7 = *im_tmp_data;
          *col8 = *im_tmp_data;

          col0++;
          col1++;
          col2++;
          col3++;
          col4++;
          col5++;
          col6++;
          col7++;
          col8++;

          im_tmp_data++;
        }

        im_tmp_data = im_data + 1;
        col0 = col_data + 0 * oosize + osize + 2;
        col1 = col_data + 1 * oosize + osize + 1;
        col2 = col_data + 2 * oosize + osize;

        col3 = col_data + 3 * oosize + 2;
        col4 = col_data + 4 * oosize + 1;
        col5 = col_data + 5 * oosize;

        for (int i = 0; i < nk4; i++) {
          im1 = vld1q_f32(im_tmp_data);
          vst1q_f32(col0, im1);
          vst1q_f32(col1, im1);
          vst1q_f32(col2, im1);
          vst1q_f32(col3, im1);
          vst1q_f32(col4, im1);
          vst1q_f32(col5, im1);

          col0 += 4;
          col1 += 4;
          col2 += 4;
          col3 += 4;
          col4 += 4;
          col5 += 4;
          im_tmp_data += 4;
        }

        for (int i = 0; i < mk4; i++) {
          *col0 = *im_tmp_data;
          *col1 = *im_tmp_data;
          *col2 = *im_tmp_data;
          *col3 = *im_tmp_data;
          *col4 = *im_tmp_data;
          *col5 = *im_tmp_data;
          col0++;
          col1++;
          col2++;
          col3++;
          col4++;
          col5++;

          im_tmp_data++;
        }

        // fill 0 1 11;
        for (int i = 0; i < osize; ++i) {
          col_data[0 * oosize + i * osize] = 0.0;
          col_data[3 * oosize + i * osize] = 0.0;
          col_data[6 * oosize + i * osize] = 0.0;

          col_data[2 * oosize + osize - 1 + i * osize] = 0.0;
          col_data[5 * oosize + osize - 1 + i * osize] = 0.0;
          col_data[8 * oosize + osize - 1 + i * osize] = 0.0;
        }

        col_data[0 * oosize + osize + 1] = im_data[0];
        col_data[3 * oosize + 1] = im_data[0];
        col_data[6 * oosize + 1] = im_data[osize];

        col_data[1 * oosize + osize] = im_data[0];
        col_data[4 * oosize] = im_data[0];
        col_data[7 * oosize] = im_data[osize];

        float32x4_t zero4;
        zero4 = vdupq_n_f32(0.0);
        auto col_z0 = col_data;
        auto col_z1 = col_data + oosize;
        auto col_z2 = col_data + 2 * oosize;
        auto col_z6 = col_data + 6 * oosize + osize * (osize - 1);
        auto col_z7 = col_data + 7 * oosize + osize * (osize - 1);
        auto col_z8 = col_data + 8 * oosize + osize * (osize - 1);

        for (int i = 0; i < nk4; ++i) {
          vst1q_f32(col_z0, zero4);
          vst1q_f32(col_z1, zero4);
          vst1q_f32(col_z2, zero4);
          vst1q_f32(col_z6, zero4);
          vst1q_f32(col_z7, zero4);
          vst1q_f32(col_z8, zero4);

          col_z0 += 4;
          col_z1 += 4;
          col_z2 += 4;
          col_z6 += 4;
          col_z7 += 4;
          col_z8 += 4;
        }

        for (int i = 0; i < mk4; ++i) {
          col_z0[i] = 0.0;
          col_z1[i] = 0.0;
          col_z2[i] = 0.0;
          col_z6[i] = 0.0;
          col_z7[i] = 0.0;
          col_z8[i] = 0.0;
        }
        col_data += 9 * oosize;
        im_data += isize * isize;
      }
    } else if (stride[0] == 2 && filter_height == 3 && pad1 &&
               dilation[0] == 1) {
      for (int c = 0; c < im_channels; ++c) {
        int oosize = osize * osize;
        int nk4 = osize / 4;
        int mk4 = osize % 4;

        // 3 2 3 1 0 1 3 2 3
        float *col0 = col_data + 0 * oosize + osize + 1;
        float *col1 = col_data + 1 * oosize + osize;
        float *col2 = col_data + 2 * oosize + osize;

        float *col3 = col_data + 3 * oosize + 1;
        float *col4 = col_data + 4 * oosize;
        float *col5 = col_data + 5 * oosize;

        float *col6 = col_data + 6 * oosize + 1;
        float *col7 = col_data + 7 * oosize;
        float *col8 = col_data + 8 * oosize;

        float32x4x2_t im01;
        float32x4x2_t im23;
        const float *im_tmp_data0 = im_data;
        const float *im_tmp_data2 = im_data + isize;

        for (int j = 0; j < osize; ++j) {
          for (int i = 0; i < nk4; ++i) {
            im01 = vld2q_f32(im_tmp_data0);
            im23 = vld2q_f32(im_tmp_data2);
            vst1q_f32(col0, im23.val[1]);
            vst1q_f32(col1, im23.val[0]);
            vst1q_f32(col2, im23.val[1]);
            vst1q_f32(col3, im01.val[1]);
            vst1q_f32(col4, im01.val[0]);
            vst1q_f32(col5, im01.val[1]);
            vst1q_f32(col6, im23.val[1]);
            vst1q_f32(col7, im23.val[0]);
            vst1q_f32(col8, im23.val[1]);

            col0 += 4;
            col1 += 4;
            col2 += 4;
            col3 += 4;
            col4 += 4;
            col5 += 4;
            col6 += 4;
            col7 += 4;
            col8 += 4;

            im_tmp_data0 += 8;
            im_tmp_data2 += 8;
          }
          const float *im_tmp_data1 = im_tmp_data0 + 1;
          const float *im_tmp_data3 = im_tmp_data2 + 1;
          for (int i = 0; i < mk4; ++i) {
            *col0 = *im_tmp_data3;
            *col1 = *im_tmp_data2;
            *col2 = *im_tmp_data3;
            *col3 = *im_tmp_data1;
            *col4 = *im_tmp_data0;
            *col5 = *im_tmp_data1;
            *col6 = *im_tmp_data3;
            *col7 = *im_tmp_data2;
            *col8 = *im_tmp_data3;

            col0++;
            col1++;
            col2++;
            col3++;
            col4++;
            col5++;
            col6++;
            col7++;
            col8++;
            im_tmp_data0 += 2;
            im_tmp_data1 += 2;
            im_tmp_data2 += 2;
            im_tmp_data3 += 2;
          }
          im_tmp_data0 += (isize - fill);
          im_tmp_data2 += (isize - fill);
        }
        for (int i = 0; i < osize; ++i) {
          col_data[0 * oosize + i * osize] = 0.0;
          col_data[3 * oosize + i * osize] = 0.0;
          col_data[6 * oosize + i * osize] = 0.0;
          if (pad2) {
            col_data[2 * oosize + osize - 1 + i * osize] = 0.0;
            col_data[5 * oosize + osize - 1 + i * osize] = 0.0;
            col_data[8 * oosize + osize - 1 + i * osize] = 0.0;
          }
        }
        float32x4_t zero4;
        zero4 = vdupq_n_f32(0.0);
        auto col_z0 = col_data;
        auto col_z1 = col_data + oosize;
        auto col_z2 = col_data + 2 * oosize;
        auto col_z6 = col_data + 6 * oosize + osize * (osize - 1);
        auto col_z7 = col_data + 7 * oosize + osize * (osize - 1);
        auto col_z8 = col_data + 8 * oosize + osize * (osize - 1);

        for (int i = 0; i < nk4; ++i) {
          vst1q_f32(col_z0, zero4);
          vst1q_f32(col_z1, zero4);
          vst1q_f32(col_z2, zero4);
          if (pad2) {
            vst1q_f32(col_z6, zero4);
            vst1q_f32(col_z7, zero4);
            vst1q_f32(col_z8, zero4);
          }
          col_z0 += 4;
          col_z1 += 4;
          col_z2 += 4;
          col_z6 += 4;
          col_z7 += 4;
          col_z8 += 4;
        }

        for (int i = 0; i < mk4; ++i) {
          col_z0[i] = 0.0;
          col_z1[i] = 0.0;
          col_z2[i] = 0.0;
          if (pad2) {
            col_z6[i] = 0.0;
            col_z7[i] = 0.0;
            col_z8[i] = 0.0;
          }
        }

        col_data[1 * oosize + osize] = im_data[isize];
        for (int i = 1; i < osize; ++i) {
          col_data[3 * oosize + i] = im_data[(i - 1) * stride[0] + 1];
        }
        col_data[4 * oosize] = im_data[0];
        col_data[7 * oosize] = im_data[isize];

        col_data += 9 * oosize;
        im_data += isize * isize;
      }
    } else {
      for (int c = 0; c < channels_col; ++c) {
        int w_offset = c % filter_width;
        int h_offset = (c / filter_width) % filter_height;
        int c_im = c / (filter_width * filter_height);
        for (int h = 0; h < col_height; ++h) {
          int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
          for (int w = 0; w < col_width; ++w) {
            int im_col_idx =
                w * stride[1] - padding[1] + w_offset * dilation[1];
            int col_idx = (c * col_height + h) * col_width + w;
            int im_idx =
                (im_row_idx + c_im * im_height) * im_width + im_col_idx;

            col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height ||
                                 im_col_idx < 0 || im_col_idx >= im_width)
                                    ? static_cast<T>(0)
                                    : im_data[im_idx];
          }
朔-望's avatar
朔-望 已提交
410
        }
411
      }
朔-望's avatar
朔-望 已提交
412
    }
E
eclipsess 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
#else
    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / (filter_width * filter_height);
      for (int h = 0; h < col_height; ++h) {
        int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
        for (int w = 0; w < col_width; ++w) {
          int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
          int col_idx = (c * col_height + h) * col_width + w;
          int im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx;

          col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height ||
                               im_col_idx < 0 || im_col_idx >= im_width)
                                  ? static_cast<T>(0)
                                  : im_data[im_idx];
        }
      }
    }
#endif
433
  }
朔-望's avatar
朔-望 已提交
434
};
朔-望's avatar
朔-望 已提交
435

朔-望's avatar
朔-望 已提交
436 437 438 439 440 441
/*
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height,
 * output_width]
 */
朔-望's avatar
朔-望 已提交
442 443 444
template <class T>
class Col2ImFunctor<ColFormat::kCFO, CPU, T> {
 public:
445 446 447 448 449 450 451 452 453 454 455 456 457
  void operator()(const framework::Tensor &col,
                  const std::vector<int> &dilation,
                  const std::vector<int> &stride,
                  const std::vector<int> &padding, framework::Tensor *im) {
    //    PADDLE_ENFORCE(im->dims().size() == 3);
    //    PADDLE_ENFORCE(col.dims().size() == 5);
    int im_channels = im->dims()[0];
    int im_height = im->dims()[1];
    int im_width = im->dims()[2];
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
    int col_height = col.dims()[3];
    int col_width = col.dims()[4];
朔-望's avatar
朔-望 已提交
458

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    //    PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2]
    //    -
    //                       ((dilation[0] * (filter_height - 1)
    //                       + 1))) /
    //                              stride[0] +
    //                          1,
    //                      col_height,
    //                      "Output_height and
    //                      padding(padding_up, padding_down)
    //                      are " "inconsistent.");
    //    PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3]
    //    -
    //                       ((dilation[1] * (filter_width - 1)
    //                       + 1))) /
    //                              stride[1] +
    //                          1,
    //                      col_width,
    //                      "Output_height and
    //                      padding(padding_up, padding_down)
    //                      are " "inconsistent.");
朔-望's avatar
朔-望 已提交
479

480
    int channels_col = im_channels * filter_height * filter_width;
朔-望's avatar
朔-望 已提交
481

482 483
    T *im_data = im->data<T>();
    const T *col_data = col.data<T>();
朔-望's avatar
朔-望 已提交
484

485 486 487 488 489 490 491 492 493 494 495 496 497
    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / (filter_width * filter_height);
      for (int h = 0; h < col_height; ++h) {
        int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
        for (int w = 0; w < col_width; ++w) {
          int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
          if ((im_row_idx) >= 0 && (im_row_idx) < im_height &&
              (im_col_idx) >= 0 && (im_col_idx) < im_width) {
            im_data[(im_row_idx + c_im * im_height) * im_width + im_col_idx] +=
                col_data[(c * col_height + h) * col_width + w];
          }
朔-望's avatar
朔-望 已提交
498
        }
499
      }
朔-望's avatar
朔-望 已提交
500
    }
501
  }
朔-望's avatar
朔-望 已提交
502
};
朔-望's avatar
朔-望 已提交
503

朔-望's avatar
朔-望 已提交
504
template class Im2ColFunctor<ColFormat::kCFO, CPU, float>;
E
eclipsess 已提交
505
// template class Im2ColFunctor<ColFormat::kCFO, CPU, double>;
朔-望's avatar
朔-望 已提交
506 507
template class Col2ImFunctor<ColFormat::kCFO, CPU, float>;
template class Col2ImFunctor<ColFormat::kCFO, CPU, double>;
朔-望's avatar
朔-望 已提交
508

朔-望's avatar
朔-望 已提交
509 510 511 512 513 514
/*
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height,
 * filter_width]
 */
朔-望's avatar
朔-望 已提交
515 516 517
template <class T>
class Im2ColFunctor<ColFormat::kOCF, CPU, T> {
 public:
518 519 520 521 522 523 524 525 526 527 528 529
  void operator()(const framework::Tensor &im, const std::vector<int> &dilation,
                  const std::vector<int> &stride,
                  const std::vector<int> &padding, framework::Tensor *col) {
    //    PADDLE_ENFORCE(im.dims().size() == 3);
    //    PADDLE_ENFORCE(col->dims().size() == 5);
    int im_channels = im.dims()[0];
    int im_height = im.dims()[1];
    int im_width = im.dims()[2];
    int filter_height = col->dims()[3];
    int filter_width = col->dims()[4];
    int col_height = col->dims()[0];
    int col_width = col->dims()[1];
朔-望's avatar
朔-望 已提交
530

531 532 533 534 535 536 537 538 539 540 541 542
    //    PADDLE_ENFORCE_EQ(
    //        (im_height + padding[0] + padding[2] -
    //        filter_height) / stride[0]
    //        + 1, col_height, "Output_height and
    //        padding(padding_up,
    //        padding_down) are " "inconsistent.");
    //    PADDLE_ENFORCE_EQ(
    //        (im_width + padding[1] + padding[3] -
    //        filter_width) / stride[1] +
    //        1, col_width, "col_width and padding(padding_left,
    //        padding_right)
    //        are " "inconsistent.");
朔-望's avatar
朔-望 已提交
543

544 545
    const T *im_data = im.data<T>();
    T *col_data = col->data<T>();
朔-望's avatar
朔-望 已提交
546

547 548 549 550 551 552 553 554 555 556 557
    for (int col_row_idx = 0; col_row_idx < col_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < col_width; ++col_col_idx) {
        for (int channel = 0; channel < im_channels; ++channel) {
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
            int im_row_offset =
                col_row_idx * stride[0] + filter_row_idx - padding[0];
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_col_offset =
                  col_col_idx * stride[1] + filter_col_idx - padding[1];
朔-望's avatar
朔-望 已提交
558

559 560 561 562 563 564 565
              int col_offset =
                  ((((col_row_idx)*col_width + col_col_idx) * im_channels +
                    channel) *
                       filter_height +
                   filter_row_idx) *
                      filter_width +
                  filter_col_idx;
朔-望's avatar
朔-望 已提交
566

567 568 569 570 571 572 573
              int im_offset = (channel * im_height + im_row_offset) * im_width +
                              im_col_offset;
              col_data[col_offset] =
                  (im_row_offset < 0 || im_row_offset >= im_height ||
                   im_col_offset < 0 || im_col_offset >= im_width)
                      ? static_cast<T>(0)
                      : im_data[im_offset];
朔-望's avatar
朔-望 已提交
574
            }
575
          }
朔-望's avatar
朔-望 已提交
576
        }
577
      }
朔-望's avatar
朔-望 已提交
578
    }
579
  }
朔-望's avatar
朔-望 已提交
580
};
朔-望's avatar
朔-望 已提交
581

朔-望's avatar
朔-望 已提交
582 583 584 585 586 587
/*
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height,
 * filter_width]
 */
朔-望's avatar
朔-望 已提交
588 589 590
template <class T>
class Col2ImFunctor<ColFormat::kOCF, CPU, T> {
 public:
591 592 593 594 595 596 597 598 599 600 601 602 603
  void operator()(const framework::Tensor &col,
                  const std::vector<int> &dilation,
                  const std::vector<int> &stride,
                  const std::vector<int> &padding, framework::Tensor *im) {
    //    PADDLE_ENFORCE(im->dims().size() == 3);
    //    PADDLE_ENFORCE(col.dims().size() == 5);
    int im_channels = im->dims()[0];
    int im_height = im->dims()[1];
    int im_width = im->dims()[2];
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
    int col_height = col.dims()[0];
    int col_width = col.dims()[1];
朔-望's avatar
朔-望 已提交
604

605 606 607 608 609 610 611 612 613 614 615 616
    //    PADDLE_ENFORCE_EQ(
    //        (im_height + padding[0] + padding[2] -
    //        filter_height) / stride[0]
    //        + 1, col_height, "Output_height and
    //        padding(padding_up,
    //        padding_down) are " "inconsistent.");
    //    PADDLE_ENFORCE_EQ(
    //        (im_width + padding[1] + padding[3] -
    //        filter_width) / stride[1] +
    //        1, col_width, "col_width and padding(padding_left,
    //        padding_right)
    //        are " "inconsistent.");
朔-望's avatar
朔-望 已提交
617

618 619
    T *im_data = im->data<T>();
    const T *col_data = col.data<T>();
朔-望's avatar
朔-望 已提交
620

621 622 623 624 625 626 627 628 629 630 631
    for (int col_row_idx = 0; col_row_idx < col_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < col_width; ++col_col_idx) {
        for (int channel = 0; channel < im_channels; ++channel) {
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
            int im_row_offset =
                col_row_idx * stride[0] + filter_row_idx - padding[0];
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_col_offset =
                  col_col_idx * stride[1] + filter_col_idx - padding[1];
朔-望's avatar
朔-望 已提交
632

633 634 635 636 637 638 639
              int col_offset =
                  (((col_row_idx * col_width + col_col_idx) * im_channels +
                    channel) *
                       filter_height +
                   filter_row_idx) *
                      filter_width +
                  filter_col_idx;
朔-望's avatar
朔-望 已提交
640

641 642 643 644 645 646 647
              if (im_row_offset >= 0 && im_row_offset < im_height &&
                  im_col_offset >= 0 && im_col_offset < im_width) {
                int im_offset =
                    (channel * im_height + im_row_offset) * im_width +
                    im_col_offset;
                im_data[im_offset] += col_data[col_offset];
              }
朔-望's avatar
朔-望 已提交
648
            }
649
          }
朔-望's avatar
朔-望 已提交
650
        }
651
      }
朔-望's avatar
朔-望 已提交
652
    }
653
  }
朔-望's avatar
朔-望 已提交
654
};
朔-望's avatar
朔-望 已提交
655

朔-望's avatar
朔-望 已提交
656 657 658 659
template class Im2ColFunctor<ColFormat::kOCF, CPU, float>;
template class Im2ColFunctor<ColFormat::kOCF, CPU, double>;
template class Col2ImFunctor<ColFormat::kOCF, CPU, float>;
template class Col2ImFunctor<ColFormat::kOCF, CPU, double>;
朔-望's avatar
朔-望 已提交
660

朔-望's avatar
朔-望 已提交
661 662 663
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile