fully_connected_pe.hpp 2.8 KB
Newer Older
C
Chon 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>

19 20 21 22
#include "lite/backends/fpga/KD/pe.hpp"
#include "lite/backends/fpga/KD/pe_params.hpp"
#include "lite/backends/fpga/KD/pes/conv_pe.hpp"
#include "lite/backends/fpga/KD/pes/conv_process.hpp"
C
Chon 已提交
23

Y
Yan Chunwei 已提交
24
namespace paddle {
C
Chon 已提交
25 26 27 28
namespace zynqmp {

class FullyConnectedPE : public PE {
 public:
Y
Yan Chunwei 已提交
29 30 31 32 33 34
  bool init() {
    Tensor* output = param_.output;
    output->setAligned(true);
    output->setDataLocation(Device);
    return true;
  }
C
Chon 已提交
35 36

  void apply() {
Y
Yan Chunwei 已提交
37
    ConvParam& convParam_ = convPE_.param();
C
Chon 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    Tensor* input = param_.input;
    convParam_.input = param_.input;
    convParam_.output = param_.output;
    convParam_.groups = 1;
    convParam_.strides = {1, 1};
    convParam_.paddings = {0, 0};
    convParam_.kernelSize = {input->shape().width(), input->shape().height()};
    convParam_.dilations = {1, 1};

    int num = param_.filter->shape().channel();
    int chw = param_.filter->shape().num();

    int height = param_.input->shape().height();
    int width = param_.input->shape().width();
    int filter_channel = chw / height / width;

    int channel = param_.output->shape().channel();
    Shape shape(NCHW, {num, filter_channel, height, width});
    Tensor* conv_filter = new Tensor();
    float* new_filter_data = conv_filter->mutableData<float>(FP32, shape);
    float* filter_data = param_.filter->data<float>();

    for (int i = 0; i < num; i++) {
      for (int j = 0; j < chw; j++) {
        float scale = filter_data[j * num + i];
        new_filter_data[i * chw + j] = scale;
      }
    }

    conv_filter->flush();
    convParam_.filter = conv_filter;

    Shape sb_shape(N, {channel});
    float* scale_data = convParam_.scale()->mutableData<float>(FP32, sb_shape);
    float* bias_data = convParam_.bias()->mutableData<float>(FP32, sb_shape);

    for (int i = 0; i < channel; i++) {
      scale_data[i] = 1.0f;
      bias_data[i] = param_.bias->data<float>()[i];
    }
Y
Yan Chunwei 已提交
78 79
    convParam_.scale()->flush();
    convParam_.bias()->flush();
C
Chon 已提交
80

Y
Yan Chunwei 已提交
81 82
    convPE_.init();
    convPE_.apply();
C
Chon 已提交
83 84
  }

Y
Yan Chunwei 已提交
85
  bool dispatch() { return convPE_.dispatch(); }
C
Chon 已提交
86 87 88 89 90

  FullyConnectedParam& param() { return param_; }

 private:
  FullyConnectedParam param_;
Y
Yan Chunwei 已提交
91
  ConvPE convPE_;
C
Chon 已提交
92 93
};
}  // namespace zynqmp
Y
Yan Chunwei 已提交
94
}  // namespace paddle