reshape_compute.cc 4.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/host/reshape_compute.h"
#include <vector>
#include "lite/operators/reshape_op.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace host {

void ReshapeCompute::Run() {
  auto& param = Param<operators::ReshapeParam>();
  auto x = param.x;
  auto actual_shape = param.actual_shape;
  auto output = param.output;
  bool inplace = param.inplace;
  auto x_dims = x->dims();
  auto output_dims = output->dims();
  if (actual_shape) {
    auto actual_shape_dims = actual_shape->dims();
    auto* actual_shape_data = actual_shape->data<int>();
#ifdef LITE_WITH_CUDA
    lite::Tensor cpu_actual_shape;
    if (actual_shape->target() == TARGET(kCUDA)) {
      cpu_actual_shape.CopyDataFrom(*actual_shape);
      actual_shape_data = cpu_actual_shape.data<int>();
    }
#endif
    auto shape = std::vector<int>(
        actual_shape_data, actual_shape_data + actual_shape_dims.production());
    output_dims = lite::operators::ValidateShape(shape, x_dims);
    output->Resize(output_dims);
  }
  if (inplace) {
    output->ShareDataWith(*x);
  } else {
    output->CopyDataFrom(*x);
  }
  output->Resize(output_dims);
}

}  // namespace host
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(reshape,
                     kHost,
                     kAny,
                     kAny,
                     paddle::lite::kernels::host::ReshapeCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(
                   TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
69 70 71
    .BindInput("ShapeTensor",
               {LiteType::GetTensorTy(
                   TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
Y
Yan Chunwei 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    .BindInput("Shape",
               {LiteType::GetTensorTy(
                   TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .BindOutput("Out",
                {LiteType::GetTensorTy(
                    TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .Finalize();

REGISTER_LITE_KERNEL(reshape2,
                     kHost,
                     kAny,
                     kAny,
                     paddle::lite::kernels::host::ReshapeCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(
                   TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .BindInput("Shape",
               {LiteType::GetTensorTy(
                   TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
92 93 94
    .BindInput("ShapeTensor",
               {LiteType::GetTensorTy(
                   TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
Y
Yan Chunwei 已提交
95 96 97 98 99 100 101
    .BindOutput("Out",
                {LiteType::GetTensorTy(
                    TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .BindOutput("XShape",
                {LiteType::GetTensorTy(
                    TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .Finalize();
T
TianXiaogang 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

REGISTER_LITE_KERNEL(flatten,
                     kHost,
                     kAny,
                     kAny,
                     paddle::lite::kernels::host::ReshapeCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(
                   TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .BindInput("Shape",
               {LiteType::GetTensorTy(
                   TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .BindOutput("Out",
                {LiteType::GetTensorTy(
                    TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .Finalize();

REGISTER_LITE_KERNEL(flatten2,
                     kHost,
                     kAny,
                     kAny,
                     paddle::lite::kernels::host::ReshapeCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(
                   TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .BindInput("Shape",
               {LiteType::GetTensorTy(
                   TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .BindOutput("Out",
                {LiteType::GetTensorTy(
                    TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .BindOutput("XShape",
                {LiteType::GetTensorTy(
                    TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .Finalize();