conv_transpose_compute_test.cc 12.7 KB
Newer Older
X
Xiaoyang LI 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/core/context.h"
#include "lite/operators/op_params.h"
#include "lite/tests/utils/naive_math_impl.h"
#include "lite/tests/utils/tensor_utils.h"
#include "lite/tests/utils/timer.h"

#ifdef LITE_WITH_ARM
#include "lite/kernels/arm/conv_transpose_compute.h"
#endif  // LITE_WITH_ARM

DEFINE_int32(cluster, 3, "cluster id");
DEFINE_int32(threads, 1, "threads num");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
DEFINE_bool(basic_test, false, "do all tests");
DEFINE_bool(check_result, true, "check the result");

DEFINE_int32(batch, 1, "batch size");
DEFINE_int32(in_channel, 32, "input channel");
DEFINE_int32(in_height, 32, "input height");
DEFINE_int32(in_width, 32, "input width");

DEFINE_int32(out_channel, 64, "output channel");
DEFINE_int32(group, 1, "group");
DEFINE_int32(kernel_h, 2, "kernel height");
DEFINE_int32(kernel_w, 2, "kernel width");
DEFINE_int32(pad_h, 0, "pad height");
DEFINE_int32(pad_w, 0, "pad width");
DEFINE_int32(stride_h, 2, "stride height");
DEFINE_int32(stride_w, 2, "stride width");
DEFINE_int32(dila_h, 1, "dilation height");
DEFINE_int32(dila_w, 1, "dilation width");

DEFINE_bool(flag_relu, false, "do relu");
DEFINE_bool(flag_bias, false, "with bias");

typedef paddle::lite::DDim DDim;
typedef paddle::lite::Tensor Tensor;
typedef paddle::lite::operators::ConvParam ConvParam;

DDim compute_out_dim(const DDim& dim_in,
                     const paddle::lite::operators::ConvParam& param) {
  auto filter_dims = param.filter->dims();
  DDim output_shape = dim_in;
  output_shape[1] = filter_dims[1] * param.groups;
  for (int i = 0; i < 2; i++) {
    int kernel_extent = param.dilations[i] * (filter_dims[i + 2] - 1) + 1;
    int output_len = (dim_in[i + 2] - 1) * param.strides[i] + kernel_extent -
                     2 * param.paddings[i];
    output_shape[i + 2] = output_len;
  }
  return output_shape;
}

#ifdef LITE_WITH_ARM
void test_conv_transpose_fp32(const std::vector<DDim>& input_dims,
                              const DDim& weight_dim,
                              int group,
                              const std::vector<int>& strides,
                              const std::vector<int>& pads,
                              const std::vector<int>& dilas,
                              bool flag_bias,
                              bool flag_relu,
                              const std::vector<int>& thread_num,
                              const std::vector<int>& cluster_id) {
#ifdef LITE_WITH_ARM
  paddle::lite::DeviceInfo::Init();
#endif
  ConvParam param;
  param.x = new Tensor;
  param.x->set_precision(PRECISION(kFloat));
  param.filter = new Tensor;
  param.filter->Resize(weight_dim);
  param.filter->set_precision(PRECISION(kFloat));
  if (flag_bias) {
    param.bias = new Tensor;
    param.bias->Resize({weight_dim[0]});
    param.bias->set_precision(PRECISION(kFloat));
  }
  param.strides = strides;
  param.paddings = pads;
  param.dilations = dilas;
  param.fuse_relu = flag_relu;
  param.groups = group;

  param.output = new Tensor;
  param.output->set_precision(PRECISION(kFloat));

  //  paddle::lite::fill_tensor_rand(*param.filter, -1.f, 1.f);
  paddle::lite::fill_tensor_const(*param.filter, 1.f);
  if (flag_bias) {
    //    paddle::lite::fill_tensor_rand(*param.bias, -1.f, 1.f);
    paddle::lite::fill_tensor_const(*param.bias, 1.f);
  }
  Tensor tmp_weights;
  tmp_weights.Resize(weight_dim);
  tmp_weights.CopyDataFrom(*param.filter);
  auto wptr = tmp_weights.data<float>();
  auto bias_ptr = flag_bias ? param.bias->data<float>() : nullptr;

  for (auto& cls : cluster_id) {
    for (auto& th : thread_num) {
      paddle::lite::kernels::arm::Conv2DTransposeCompute conv_t;
      std::unique_ptr<paddle::lite::KernelContext> ctx1(
          new paddle::lite::KernelContext);
      auto& ctx = ctx1->As<paddle::lite::ARMContext>();
      ctx.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), th);
      /// set param and context
      for (auto& dim_in : input_dims) {
        param.x->Resize(dim_in);
        DDim out_tmp_dims = compute_out_dim(dim_in, param);
        if (out_tmp_dims[2] < 1 || out_tmp_dims[3] < 1) {
          continue;
        }
        param.output->Resize(out_tmp_dims);
        break;
      }
      conv_t.SetParam(param);
      conv_t.SetContext(std::move(ctx1));
      /// prepare for run
      conv_t.PrepareForRun();

      for (auto& dim_in : input_dims) {
        CHECK_EQ(weight_dim[0], dim_in[1])
            << "input channel must equal to weights channel";
        DDim dim_out = compute_out_dim(dim_in, param);
        if (dim_out[2] < 1 || dim_out[3] < 1) {
          continue;
        }
        param.x->Resize(dim_in);
        param.output->Resize(dim_out);

        //        paddle::lite::fill_tensor_rand(*param.x, -1.f, 1.f);
        paddle::lite::fill_tensor_const(*param.x, 1.f);
        auto din = param.x->data<float>();

        Tensor tout_basic;
        if (FLAGS_check_result) {
          tout_basic.set_precision(PRECISION(kFloat));
          tout_basic.Resize(dim_out);
          fill_tensor_const(tout_basic, 0.f);
          auto dout_basic = tout_basic.mutable_data<float>();

          deconv_basic<float, float>(din,
                                     dout_basic,
                                     dim_in[0],
                                     dim_out[1],
                                     dim_out[2],
                                     dim_out[3],
                                     dim_in[1],
                                     dim_in[2],
                                     dim_in[3],
                                     wptr,
                                     bias_ptr,
                                     group,
                                     weight_dim[3],
                                     weight_dim[2],
                                     strides[1],
                                     strides[0],
                                     dilas[1],
                                     dilas[0],
                                     pads[1],
                                     pads[0],
                                     flag_bias,
                                     flag_relu);
        }
        /// warm up
        for (int i = 0; i < FLAGS_warmup; ++i) {
          conv_t.Launch();
        }
        /// compute
        lite::test::Timer t0;
        for (int i = 0; i < FLAGS_repeats; ++i) {
          t0.start();
          conv_t.Launch();
          t0.end();
        }

        float gops =
            2.f * tmp_weights.numel() * dim_in[0] * dim_in[2] * dim_in[3];
        LOG(INFO) << "conv fp32: input shape: " << dim_in << ", output shape"
                  << dim_out << ",running time, avg: " << t0.get_average_ms()
                  << ", min time: " << t0.get_min_time()
                  << ", total GOPS: " << 1e-9 * gops
                  << " GOPS, avg GOPs: " << 1e-6 * gops / t0.get_average_ms()
                  << " GOPs, max GOPs: " << 1e-6 * gops / t0.get_min_time();

        if (FLAGS_check_result) {
          double max_ratio = 0;
          double max_diff = 0;
          tensor_cmp_host(tout_basic, *param.output, max_ratio, max_diff);
          LOG(INFO) << "compare result, max diff: " << max_diff
                    << ", max ratio: " << max_ratio;
          if (std::abs(max_ratio) > 1e-3f) {
            if (max_diff > 5e-4f) {
              LOG(WARNING) << "basic result";
              print_tensor(tout_basic);
              LOG(WARNING) << "saber result";
              print_tensor(*param.output);
              Tensor tdiff;
              tdiff.Resize(tout_basic.dims());
              tdiff.set_precision(PRECISION(kFloat));
              tensor_diff(tout_basic, *param.output, tdiff);
              print_tensor(tdiff);
              LOG(FATAL) << "test fp32 conv: input: " << dim_in
                         << ", output: " << dim_out
                         << ", weight dim: " << weight_dim
                         << ", pad: " << pads[0] << ", " << pads[1]
                         << ", stride: " << strides[0] << ", " << strides[1]
                         << ", dila_: " << dilas[0] << ", " << dilas[1]
                         << ", bias: " << (flag_bias ? "true" : "false")
                         << ", relu: " << (flag_relu ? "true" : "false")
                         << ", threads: " << th << ", cluster: " << cls
                         << " failed!!\n";
            }
          }
        }
        LOG(INFO) << "test fp32 conv: input: " << dim_in
                  << ", output: " << dim_out << ", weight dim: " << weight_dim
                  << ", pad: " << pads[0] << ", " << pads[1]
                  << ", stride: " << strides[0] << ", " << strides[1]
                  << ", dila_: " << dilas[0] << ", " << dilas[1]
                  << ", bias: " << (flag_bias ? "true" : "false")
                  << ", relu: " << (flag_relu ? "true" : "false")
                  << ", threads: " << th << ", cluster: " << cls
                  << " successed!!\n";
      }
    }
  }

  delete param.x;
  delete param.filter;
  delete param.output;
  delete param.bias;
}
#else
void test_conv_transpose_fp32(const std::vector<DDim>& input_dims,
                              const DDim& weight_dim,
                              int group,
                              const std::vector<int>& strides,
                              const std::vector<int>& pads,
                              const std::vector<int>& dilas,
                              bool flag_bias,
                              bool flag_relu,
                              const std::vector<int>& thread_num,
                              const std::vector<int>& cluster_id) {}
#endif  // LITE_WITH_ARM

#if 1  /// random param conv
TEST(TestConvRand, test_conv_transpose_rand) {
  if (FLAGS_basic_test) {
    for (auto& cin : {1, 3, 8, 16}) {
      for (auto& cout : {1, 5, 8, 16}) {
        for (auto& g : {1, 2}) {
          for (auto& kw : {1, 2, 3}) {
            for (auto& kh : {1, 2, 3}) {
              for (auto& stride : {1, 2}) {
                for (auto& pad : {0, 1, 2}) {
                  for (auto& dila : {1, 2}) {
                    for (auto& flag_bias : {false, true}) {
                      for (auto& flag_relu : {false, true}) {
                        if (cin % g != 0 || cout % g != 0) {
                          continue;
                        }
                        std::vector<DDim> dims;
                        DDim weights_dim({cin, cout / g, kh, kw});
                        for (auto& batch : {1, 2}) {
                          for (auto& h : {1, 3, 19, 32, 28}) {
                            dims.push_back(DDim({batch, cin, h, h}));
                          }
                        }
                        test_conv_transpose_fp32(dims,
                                                 weights_dim,
                                                 g,
                                                 {stride, stride},
                                                 {pad, pad},
                                                 {dila, dila},
                                                 flag_bias,
                                                 flag_relu,
                                                 {1, 2, 4},
                                                 {FLAGS_cluster});
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// random param conv

#if 1  /// custom
TEST(TestConvCustom, test_conv_transpose_fp32_custom_size) {
  CHECK_EQ(FLAGS_in_channel % FLAGS_group, 0)
      << "input channel must be divided by group";
  CHECK_EQ(FLAGS_out_channel % FLAGS_group, 0)
      << "num_output must be divided by group";
  test_conv_transpose_fp32(
      {DDim({FLAGS_batch, FLAGS_in_channel, FLAGS_in_height, FLAGS_in_width})},
      DDim({FLAGS_in_channel,
            FLAGS_out_channel / FLAGS_group,
            FLAGS_kernel_h,
            FLAGS_kernel_w}),
      FLAGS_group,
      {FLAGS_stride_h, FLAGS_stride_w},
      {FLAGS_pad_h, FLAGS_pad_w},
      {FLAGS_dila_h, FLAGS_dila_w},
      FLAGS_flag_bias,
      FLAGS_flag_relu,
      {FLAGS_threads},
      {FLAGS_cluster});
}
#endif  // custom