elementwise_mul_image_compute.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
17
#include "lite/backends/opencl/cl_half.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class ElementwiseMulImageCompute
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::ElementwiseParam;

  std::string doc() const override {
    return "ElementwiseMul using cl::Image2D(ImageDefault/RGBA), kFP32";
  }

  void PrepareForRun() override {
    ele_param_ = param_.get_mutable<param_t>();
    auto* y = ele_param_->Y;
    auto* x = ele_param_->X;
47
    auto bias_dims = y->dims();
48
    auto x_dims = x->dims();
49 50

    if (bias_dims == x_dims) {
51
      kernel_func_name_ = "elementwise_mul";
52 53 54 55 56 57 58 59 60 61
    } else {
      const int bias_dim_size = bias_dims.size();
      if (bias_dim_size == 1) {
        kernel_func_name_ = "channel_mul_d1";
      } else if (bias_dim_size == 2) {
        kernel_func_name_ = "channel_mul_d2";
      } else if (bias_dim_size == 3) {
        kernel_func_name_ = "channel_mul_d3";
      } else if (bias_dim_size == 4) {
        kernel_func_name_ = "channel_mul_d4";
62
      } else {
63 64
        LOG(FATAL) << "Unsupported ElementwiseMul with x_dims:" << x_dims
                   << " y_dims:" << bias_dims;
65 66
      }
    }
67

68
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
69 70 71
    VLOG(4) << "x_dims:" << x_dims;
    VLOG(4) << "bias_dims:" << bias_dims;
    VLOG(4) << "bias_dims.size():" << bias_dims.size();
72 73 74 75 76 77 78 79 80 81 82 83 84 85

    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/elementwise_mul_kernel.cl", build_options_);
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto* x = ele_param_->X;
    auto* y = ele_param_->Y;
    auto* out = ele_param_->Out;

86
#ifndef LITE_SHUTDOWN_LOG
87 88 89 90 91 92
    VLOG(4) << "x->target():" << TargetToStr(x->target());
    VLOG(4) << "y->target():" << TargetToStr(y->target());
    VLOG(4) << "out->target():" << TargetToStr(out->target());
    VLOG(4) << "x->dims():" << x->dims();
    VLOG(4) << "y->dims():" << y->dims();
    VLOG(4) << "out->dims():" << out->dims();
93
#endif
94 95 96 97 98 99 100 101 102 103

    paddle::lite::CLImageConverterDefault default_convertor;
    auto x_img_shape =
        default_convertor.InitImageDimInfoWith(x->dims());  // w, h
    auto x_img_width = x_img_shape[0];
    auto x_img_height = x_img_shape[1];
    auto out_img_shape =
        default_convertor.InitImageDimInfoWith(out->dims());  // w, h
    auto y_img_shape = default_convertor.InitImageDimInfoWith(y->dims());

104 105 106 107
    auto* x_img = x->data<half_t, cl::Image2D>();
    auto* y_img = y->data<half_t, cl::Image2D>();
    auto* out_img = out->mutable_data<half_t, cl::Image2D>(out_img_shape[0],
                                                           out_img_shape[1]);
108

109
#ifndef LITE_SHUTDOWN_LOG
110 111 112 113
    VLOG(4) << "x_img_shape[w,h]:" << x_img_width << " " << x_img_height;
    VLOG(4) << "y_img_shape[w,h]:" << y_img_shape[0] << " " << y_img_shape[1];
    VLOG(4) << "out_img_shape[w,h]:" << out_img_shape[0] << " "
            << out_img_shape[1];
114
#endif
115 116 117 118 119

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

120
    auto bias_dims = y->dims();
121
    auto x_dims = x->dims();
122 123 124 125

    if (bias_dims == x_dims) {
      // kernel_func_name_ = "elementwise_mul";
      cl_int status = kernel.setArg(0, *x_img);
126
      CL_CHECK_FATAL(status);
127
      status = kernel.setArg(1, *y_img);
128
      CL_CHECK_FATAL(status);
129
      status = kernel.setArg(2, *out_img);
130
      CL_CHECK_FATAL(status);
131 132 133 134 135 136
    } else {
      const int bias_dim_size = bias_dims.size();
      if (bias_dim_size == 1) {
        // kernel_func_name_ = "channel_mul_d1";
        const int tensor_w = x_dims[x_dims.size() - 1];
        cl_int status = kernel.setArg(0, *x_img);
137
        CL_CHECK_FATAL(status);
138
        status = kernel.setArg(1, *y_img);
139
        CL_CHECK_FATAL(status);
140
        status = kernel.setArg(2, *out_img);
141
        CL_CHECK_FATAL(status);
142
        status = kernel.setArg(3, tensor_w);
143
        CL_CHECK_FATAL(status);
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
      } else if (bias_dim_size == 2) {
        // kernel_func_name_ = "channel_mul_d2";
        const int tensor_w = x_dims[x_dims.size() - 1];
        cl_int status = kernel.setArg(0, *x_img);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(1, *y_img);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(2, *out_img);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(3, tensor_w);
        CL_CHECK_FATAL(status);
      } else if (bias_dim_size == 3) {
        // kernel_func_name_ = "channel_mul_d3";
        const int tensor_w = x_dims[x_dims.size() - 1];
        cl_int status = kernel.setArg(0, *x_img);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(1, *y_img);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(2, *out_img);
163
        CL_CHECK_FATAL(status);
164
        status = kernel.setArg(3, tensor_w);
165
        CL_CHECK_FATAL(status);
166 167 168 169
      } else if (bias_dim_size == 4) {
        // kernel_func_name_ = "channel_mul_d4";
        const int tensor_w = x_dims[x_dims.size() - 1];
        cl_int status = kernel.setArg(0, *x_img);
170
        CL_CHECK_FATAL(status);
171
        status = kernel.setArg(1, *y_img);
172
        CL_CHECK_FATAL(status);
173
        status = kernel.setArg(2, *out_img);
174
        CL_CHECK_FATAL(status);
175 176 177 178 179
        status = kernel.setArg(3, tensor_w);
        CL_CHECK_FATAL(status);
      } else {
        LOG(FATAL) << "Unsupported ElementwiseMul with x_dims:" << x_dims
                   << " y_dims:" << bias_dims;
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
      }
    }

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(x_img_width),
                    static_cast<cl::size_type>(x_img_height)};
    auto status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
195
#ifndef LITE_SHUTDOWN_LOG
196
    VLOG(4) << "global_work_size:[2D]:" << x_img_width << " " << x_img_height;
197
#endif
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
  }

 protected:
  param_t* ele_param_{nullptr};
  std::string kernel_func_name_{"elementwise_mul"};
  std::string build_options_{"-DCL_DTYPE_half"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(elementwise_mul,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     ocl::ElementwiseMulImageCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Y",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();