conv_kernel.cl 16.2 KB
Newer Older
L
liuruilong 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuruilong 已提交
2

L
liuruilong 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
L
liuruilong 已提交
6

L
liuruilong 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
L
liuruilong 已提交
8

L
liuruilong 已提交
9 10 11 12 13 14
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
liuruilong 已提交
15
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
L
liuruilong 已提交
16

L
liuruilong 已提交
17 18 19 20 21 22 23 24
__kernel void conv_3x3(__private const int global_size_dim0,
                                              __private const int global_size_dim1,
                                              __private const int global_size_dim2,
                                              __read_only image2d_t input_image,
                                              __read_only image2d_t filter,
#ifdef BIASE
                                              __read_only image2d_t bias,
#endif
L
liuruilong 已提交
25

L
liuruilong 已提交
26 27 28 29
#ifdef BATCH_NORM
                                              __read_only image2d_t new_scale,
                                              __read_only image2d_t new_biase,
#endif
L
liuruilong 已提交
30

L
liuruilong 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
                                              __write_only image2d_t output_image,
                                              __private const int stride,
                                              __private const int offset,
                                              __private const int input_c,
                                              __private const int dilation,
                                              __private const int input_width,/* of one block */
                                              __private const int input_height,/* of one block */
                                              __private const int output_width,
                                              __private const int output_height) {

    const int out_c = get_global_id(0);
    const int out_w = get_global_id(1);
    const int out_nh = get_global_id(2);

    int2 stride_xy;
    stride_xy.x = stride;
    stride_xy.y = stride;

    int2 ouput_pos_in_one_block;
    ouput_pos_in_one_block.x = out_w;
    ouput_pos_in_one_block.y = out_nh;

    int2 in_pos_in_one_block;
    in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
    in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;

 #ifdef BIASE
    half4 output = read_imageh(bias, sampler, int2(out_c, 0));
#else
    half4 output = 0.0;
#endif

   half4 input[9];

   const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                              CLK_ADDRESS_CLAMP         |
                              CLK_FILTER_NEAREST;

   for (int i = 0; i < input_c; ++i) {
        int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
        input[0] = select(read_imageh(input_image, sampler,
                            (int2)(pos_in.x - dilation, pos_in.y - dilation)),
                            (half4)(0.0),
                            (ushort4)(in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height));

        input[1] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x, pos_in.y - dilation)),
                          (half4)(0.0),
                          (ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height));

        input[2] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x + dilation, pos_in.y - dilation)),
                          (half4)(0.0),
                          (ushort4)(in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height));

        input[3] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x - dilation, pos_in.y)),
                          (half4)(0.0),
                          (ushort4)(in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height));

        input[4] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x, pos_in.y)),
                          (half4)(0.0),
                          (ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height));

        input[5] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x + dilation, pos_in.y)),
                          (half4)(0.0),
                          (ushort4)(in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height));

        input[6] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x - dilation, pos_in.y + dilation)),
                          (half4)(0.0),
                          (ushort4)(in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));

        input[7] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x, pos_in.y + dilation)),
                          (half4)(0.0),
                          (ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height));

        input[8] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x + dilation, pos_in.y + dilation)),
                          (half4)(0.0),
                          (ushort4)(pos_in.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || pos_in.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height));

        for (int j = 0; j < 9; ++j) {
            int2 fuck;
            fuck.x = i * 3 + j % 3;
            fuck.y = out_c * 4 * 3 + 0 * out_c * 3 + j / 3;
            half4 weight_x = read_imageh(filter, sampler, fuck);
            output.x += dot(input[j], weight_x);

            fuck.y = out_c * 4 * 3 + 1 * out_c * 3 + j / 3;
            half4 weight_y = read_imageh(filter, sampler, fuck);
            output.y += dot(input[j], weight_y);

            fuck.y = out_c * 4 * 3 + 2 * out_c * 3 + j / 3;
            half4 weight_z = read_imageh(filter, sampler, fuck);
            output.z += dot(input[j], weight_z);

            fuck.y = out_c * 4 * 3 + 3 * out_c * 3 + j / 3;
            half4 weight_w = read_imageh(filter, sampler, fuck);
            output.w += dot(input[j], weight_w);
        }
    }

#ifdef BATCH_NORM
    output = output * read_imageh(new_scale, sampler, int2(out_c, 0)) + read_imageh(new_biase, sampler, int2(out_c, 0))
#endif

#ifdef RELU
    output = activation(output);
#endif

    write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
L
liuruilong 已提交
146 147 148
}


L
liuruilong 已提交
149 150


151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
__kernel void depth_conv_3x3(__private const int global_size_dim0,
                                              __private const int global_size_dim1,
                                              __private const int global_size_dim2,
                                              __read_only image2d_t input,
                                              __read_only image2d_t filter,
#ifdef BIASE
                                              __read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
                                              __read_only image2d_t new_scale,
                                              __read_only image2d_t new_biase,
#endif
                                              __write_only image2d_t output_image,
                                              __private const int stride,
                                              __private const int offset,
                                              __private const int input_c,
                                              __private const int dilation,
                                              __private const int input_width,/* of one block */
                                              __private const int input_height, /* of one block */
                                              __private const int output_width,
                                              __private const int output_height) {

    const int out_c = get_global_id(0);
    const int out_w = get_global_id(1);
    const int out_nh = get_global_id(2);

    const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                              CLK_ADDRESS_CLAMP          |
                              CLK_FILTER_NEAREST;

    const int batch_index = out_nh / output_height;

    const int out_nh_in_one_batch = out_nh % output_height;

    const uint kernelHXW = 1;

    int2 stride_xy = (int2)(stride, stride);
    int2 ouput_pos_in_one_block = (int2)(out_w, out_nh_in_one_batch);

    int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);

#ifdef BIASE
    half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
    half4 output = 0.0;
#endif

    int2 pos_in_input_block = (int2)(out_c * input_width, batch_index * input_height);
    int weight_x_to = out_c * 3;

    half4 inputs[9];

    inputs[0] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
                       (half4)(0.0),
                       (ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height));

    inputs[1] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
                       (half4)(0.0),
                       (ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - 1 >= input_height));

    inputs[2] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
                       (half4)(0.0),
                       (ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height));

    inputs[3] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y)),
                       (half4)(0.0),
                       (ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y >= input_height));

    inputs[4] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y)),
                       (half4)(0.0),
                       (ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height));

    inputs[5] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y)),
                       (half4)(0.0),
                       (ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y >= input_height));

    inputs[6] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
                       (half4)(0.0),
                       (ushort4)(in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height));

    inputs[7] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
                       (half4)(0.0),
                       (ushort4)(in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + 1 >= input_height));

    inputs[8] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
                       (half4)(0.0),
                       (ushort4)(in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height));

    for (int j = 0; j < 9; ++j) {
        half4 input = inputs[j];
        half4 weight = read_imageh(filter, sampler, (int2)(weight_x_to + j % 3, j / 3));
        output.x += input.x * weight.x;
        output.y += input.y * weight.y;
        output.z += input.z * weight.z;
        output.w += input.w * weight.w;
    }

#ifdef BATCH_NORM
    output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0))
#endif

#ifdef RELU
    output = activation(output);
#endif

    int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
    write_imageh(output_image, output_pos, output);

}

__kernel void conv_1x1(__private const int global_size_dim0,
                       __private const int global_size_dim1,
                       __private const int global_size_dim2,
                       __read_only image2d_t input_image,
                       __read_only image2d_t filter,
#ifdef BIASE
                       __read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
                       __read_only image2d_t new_scale,
                       __read_only image2d_t new_biase,
#endif
                       __write_only image2d_t output_image,
                       __private const int stride,
                       __private const int offset,
                       __private const int input_c,
                       __private const int dilation,
                       __private const int input_width,/* of one block */
                       __private const int input_height,/* of one block */
                       __private const int output_width,
                       __private const int output_height) {
  const int out_c = get_global_id(0);
  const int out_w = get_global_id(1);
  const int out_nh = get_global_id(2);

  const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                           CLK_ADDRESS_CLAMP         |
                           CLK_FILTER_NEAREST;
  const uint kernelHXW = 1;
  int2 stride_xy = (int2)(stride, stride);
  int2 ouput_pos_in_one_block = (int2)(out_w, out_nh);
  int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);
#ifdef BIASE
    half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
    half4 output = 0.0;
#endif

   for (int i = 0; i < input_c; ++i) {
    int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
    if (pos_in.x >=0 && pos_in.y >= 0 && pos_in.x < input_width && pos_in.y < input_height) {
        half4 input = read_imageh(input_image, sampler, pos_in);

        half4 weight_x = read_imageh(filter, sampler, (int2)(i, out_c * 4 + 0));
        output.x += dot(input, weight_x);

        half4 weight_y = read_imageh(filter, sampler, (int2)(i, out_c * 4 + 1));
        output.y += dot(input, weight_y);

        half4 weight_z = read_imageh(filter, sampler, (int2)(i, out_c * 4 + 2));
        output.z += dot(input, weight_z);

        half4 weight_w = read_imageh(filter, sampler, (int2)(i, out_c * 4 + 3));
        output.w += dot(input, weight_w);

    }
  }

#ifdef BATCH_NORM
    output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0))
#endif

#ifdef RELU
  output = activation(output);
#endif

  int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
  write_imageh(output_image, output_pos, output);

}