conv_compute_test.cc 19.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/core/context.h"
18
#include "lite/core/profile/timer.h"
19 20 21 22 23 24 25 26
#include "lite/operators/op_params.h"
#include "lite/tests/utils/naive_math_impl.h"
#include "lite/tests/utils/tensor_utils.h"

#ifdef LITE_WITH_ARM
#include "lite/kernels/arm/conv_compute.h"
#endif  // LITE_WITH_ARM

27 28 29 30 31 32 33
DEFINE_int32(power_mode,
             3,
             "power mode: "
             "0 for POWER_HIGH;"
             "1 for POWER_LOW;"
             "2 for POWER_FULL;"
             "3 for NO_BIND");
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
DEFINE_int32(threads, 1, "threads num");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
DEFINE_bool(basic_test, false, "do all tests");
DEFINE_bool(check_result, true, "check the result");

DEFINE_int32(batch, 1, "batch size");
DEFINE_int32(in_channel, 32, "input channel");
DEFINE_int32(in_height, 112, "input height");
DEFINE_int32(in_width, 112, "input width");

DEFINE_int32(out_channel, 32, "output channel");
DEFINE_int32(group, 1, "group");
DEFINE_int32(kernel_h, 3, "kernel height");
DEFINE_int32(kernel_w, 3, "kernel width");
DEFINE_int32(pad_h, 1, "pad height");
DEFINE_int32(pad_w, 1, "pad width");
DEFINE_int32(stride_h, 1, "stride height");
DEFINE_int32(stride_w, 1, "stride width");
DEFINE_int32(dila_h, 1, "dilation height");
DEFINE_int32(dila_w, 1, "dilation width");

DEFINE_bool(flag_relu, true, "do relu");
DEFINE_bool(flag_bias, true, "with bias");

typedef paddle::lite::DDim DDim;
typedef paddle::lite::Tensor Tensor;
typedef paddle::lite::operators::ConvParam ConvParam;
62
using paddle::lite::profile::Timer;
63 64 65 66

DDim compute_out_dim(const DDim& dim_in,
                     const paddle::lite::operators::ConvParam& param) {
  DDim dim_out = dim_in;
H
HappyAngel 已提交
67 68
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
69 70 71 72 73
  dim_out[1] = param.filter->dims()[0];
  auto kernel_h = param.filter->dims()[2];
  auto kernel_w = param.filter->dims()[3];
  auto h = dim_in[2];
  auto w = dim_in[3];
H
HappyAngel 已提交
74 75 76 77 78 79
  int dila_h = dilations[0];
  int dila_w = dilations[1];
  int pad_top = paddings[0];
  int pad_bottom = paddings[1];
  int pad_left = paddings[2];
  int pad_right = paddings[3];
80 81 82
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
  auto kernel_exten = dila_h * (kernel_h - 1) + 1;
H
HappyAngel 已提交
83
  auto hout = (h + pad_top + pad_bottom - kernel_exten) / stride_h + 1;
84
  kernel_exten = dila_w * (kernel_w - 1) + 1;
H
HappyAngel 已提交
85
  auto wout = (w + pad_left + pad_right - kernel_exten) / stride_w + 1;
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  dim_out[2] = hout;
  dim_out[3] = wout;
  return dim_out;
}

#ifdef LITE_WITH_ARM
void test_conv_fp32(const std::vector<DDim>& input_dims,
                    const DDim& weight_dim,
                    int group,
                    const std::vector<int>& strides,
                    const std::vector<int>& pads,
                    const std::vector<int>& dilas,
                    bool flag_bias,
                    bool flag_relu,
                    const std::vector<int>& thread_num,
101
                    const std::vector<int>& power_mode) {
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef LITE_WITH_ARM
  paddle::lite::DeviceInfo::Init();
#endif
  ConvParam param;
  param.x = new Tensor;
  param.x->set_precision(PRECISION(kFloat));
  param.filter = new Tensor;
  param.filter->Resize(weight_dim);
  param.filter->set_precision(PRECISION(kFloat));
  if (flag_bias) {
    param.bias = new Tensor;
    param.bias->Resize({weight_dim[0]});
    param.bias->set_precision(PRECISION(kFloat));
  }
  param.strides = strides;
H
HappyAngel 已提交
117 118
  param.paddings = std::make_shared<std::vector<int>>(pads);
  param.dilations = std::make_shared<std::vector<int>>(dilas);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  param.fuse_relu = flag_relu;
  param.groups = group;

  param.output = new Tensor;
  param.output->set_precision(PRECISION(kFloat));

  paddle::lite::fill_tensor_rand(*param.filter, -1.f, 1.f);
  //  paddle::lite::fill_tensor_const(*param.filter, 1.f);
  if (flag_bias) {
    paddle::lite::fill_tensor_rand(*param.bias, -1.f, 1.f);
    //    paddle::lite::fill_tensor_const(*param.bias, 1.f);
  }
  auto wptr = param.filter->data<float>();
  auto bias_ptr = flag_bias ? param.bias->data<float>() : nullptr;

134
  for (auto& cls : power_mode) {
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    for (auto& th : thread_num) {
      paddle::lite::kernels::arm::ConvCompute<PRECISION(kFloat),
                                              PRECISION(kFloat)>
          conv;
      std::unique_ptr<paddle::lite::KernelContext> ctx1(
          new paddle::lite::KernelContext);
      auto& ctx = ctx1->As<paddle::lite::ARMContext>();
      ctx.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), th);
      /// set param and context
      for (auto& dim_in : input_dims) {
        param.x->Resize(dim_in);
        DDim out_tmp_dims = compute_out_dim(dim_in, param);
        if (out_tmp_dims[2] < 1 || out_tmp_dims[3] < 1) {
          continue;
        }
        param.output->Resize(out_tmp_dims);
        break;
      }
      conv.SetParam(param);
      conv.SetContext(std::move(ctx1));
      /// prepare for run
      conv.PrepareForRun();

      for (auto& dim_in : input_dims) {
        CHECK_EQ(weight_dim[1] * group, dim_in[1])
            << "input channel must equal to weights channel";
        DDim dim_out = compute_out_dim(dim_in, param);
        if (dim_out[2] < 1 || dim_out[3] < 1) {
          continue;
        }
        param.x->Resize(dim_in);
        param.output->Resize(dim_out);

        paddle::lite::fill_tensor_rand(*param.x, -1.f, 1.f);
H
HappyAngel 已提交
169
        // paddle::lite::fill_tensor_const(*param.x, 1.f);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
        auto din = param.x->data<float>();

        Tensor tout_basic;
        if (FLAGS_check_result) {
          tout_basic.set_precision(PRECISION(kFloat));
          tout_basic.Resize(dim_out);
          fill_tensor_const(tout_basic, 0.f);
          auto dout_basic = tout_basic.mutable_data<float>();
          conv_basic<float, float>(din,
                                   dout_basic,
                                   dim_in[0],
                                   dim_out[1],
                                   dim_out[2],
                                   dim_out[3],
                                   dim_in[1],
                                   dim_in[2],
                                   dim_in[3],
                                   wptr,
                                   bias_ptr,
                                   group,
                                   weight_dim[3],
                                   weight_dim[2],
                                   strides[1],
                                   strides[0],
                                   dilas[1],
                                   dilas[0],
H
HappyAngel 已提交
196
                                   pads[2],
197 198 199 200 201 202 203 204 205
                                   pads[0],
                                   flag_bias,
                                   flag_relu);
        }
        /// warm up
        for (int i = 0; i < FLAGS_warmup; ++i) {
          conv.Launch();
        }
        /// compute
206
        Timer t0;
207
        for (int i = 0; i < FLAGS_repeats; ++i) {
208
          t0.Start();
209
          conv.Launch();
210
          t0.Stop();
211 212 213 214 215
        }

        double gops = 2.0 * dim_out.production() * dim_in[1] * weight_dim[2] *
                      weight_dim[3] / param.groups;
        LOG(INFO) << "conv fp32: input shape: " << dim_in << ", output shape"
216 217
                  << dim_out << ",running time, avg: " << t0.LapTimes().Avg()
                  << ", min time: " << t0.LapTimes().Min()
218
                  << ", total GOPS: " << 1e-9 * gops
219 220
                  << " GOPS, avg GOPs: " << 1e-6 * gops / t0.LapTimes().Avg()
                  << " GOPs, max GOPs: " << 1e-6 * gops / t0.LapTimes().Min();
221 222 223 224 225 226 227 228 229 230 231

        if (FLAGS_check_result) {
          double max_ratio = 0;
          double max_diff = 0;
          tensor_cmp_host(tout_basic, *param.output, max_ratio, max_diff);
          LOG(INFO) << "compare result, max diff: " << max_diff
                    << ", max ratio: " << max_ratio;
          if (std::abs(max_ratio) > 1e-3f) {
            if (max_diff > 5e-4f) {
              LOG(WARNING) << "basic result";
              print_tensor(tout_basic);
X
Xiaoyang LI 已提交
232
              LOG(WARNING) << "lite result";
233 234 235 236 237 238 239 240 241
              print_tensor(*param.output);
              Tensor tdiff;
              tdiff.Resize(tout_basic.dims());
              tdiff.set_precision(PRECISION(kFloat));
              tensor_diff(tout_basic, *param.output, tdiff);
              print_tensor(tdiff);
              LOG(FATAL) << "test fp32 conv: input: " << dim_in
                         << ", output: " << dim_out
                         << ", weight dim: " << weight_dim
H
HappyAngel 已提交
242 243
                         << ", pad: " << pads[0] << ", " << pads[1] << ", "
                         << pads[2] << ", " << pads[3]
244 245 246 247
                         << ", stride: " << strides[0] << ", " << strides[1]
                         << ", dila_: " << dilas[0] << ", " << dilas[1]
                         << ", bias: " << (flag_bias ? "true" : "false")
                         << ", relu: " << (flag_relu ? "true" : "false")
248
                         << ", threads: " << th << ", power_mode: " << cls
249 250 251 252 253 254 255 256 257 258 259
                         << " failed!!\n";
            }
          }
        }
        LOG(INFO) << "test fp32 conv: input: " << dim_in
                  << ", output: " << dim_out << ", weight dim: " << weight_dim
                  << ", pad: " << pads[0] << ", " << pads[1]
                  << ", stride: " << strides[0] << ", " << strides[1]
                  << ", dila_: " << dilas[0] << ", " << dilas[1]
                  << ", bias: " << (flag_bias ? "true" : "false")
                  << ", relu: " << (flag_relu ? "true" : "false")
260
                  << ", threads: " << th << ", power_mode: " << cls
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
                  << " successed!!\n";
      }
    }
  }

  delete param.x;
  delete param.filter;
  delete param.output;
  delete param.bias;
}
#else
void test_conv_fp32(const std::vector<DDim>& input_dims,
                    const DDim& weight_dim,
                    int group,
                    const std::vector<int>& strides,
                    const std::vector<int>& pads,
                    const std::vector<int>& dilas,
                    bool flag_bias,
                    bool flag_relu,
                    const std::vector<int>& thread_num,
281
                    const std::vector<int>& power_mode) {}
282 283 284 285 286 287
#endif  // LITE_WITH_ARM

#if 1  /// 3x3dw
TEST(TestConv3x3DW, test_conv3x3_depthwise) {
  if (FLAGS_basic_test) {
    for (auto& stride : {1, 2}) {
H
HappyAngel 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
      for (auto& pad_left : {0, 1, 2}) {
        for (auto& pad_right : {0, 1, 2}) {
          for (auto& pad_top : {0, 1, 2}) {
            for (auto& pad_bottom : {0, 1, 2}) {
              for (auto& flag_bias : {false, true}) {
                for (auto& flag_relu : {false, true}) {
                  for (auto& c : {1, 3, 5, 8, 16, 32}) {
                    std::vector<DDim> dims;
                    DDim weights_dim({c, 1, 3, 3});
                    for (auto& batch : {1, 2}) {
                      for (auto& h : {1, 3, 15, 19, 28, 32, 75}) {
                        dims.push_back(DDim({batch, c, h, h}));
                      }
                    }
                    test_conv_fp32(dims,
                                   weights_dim,
                                   c,
                                   {stride, stride},
                                   {pad_top, pad_bottom, pad_left, pad_right},
                                   {1, 1},
                                   flag_bias,
                                   flag_relu,
                                   {1, 2, 4},
                                   {FLAGS_power_mode});
                  }
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// 3x3dw

#if 1  /// 5x5dw
TEST(TestConv5x5DW, test_conv5x5_depthwise) {
  if (FLAGS_basic_test) {
    for (auto& stride : {1, 2}) {
      for (auto& pad : {0, 1, 2}) {
        for (auto& flag_bias : {false, true}) {
          for (auto& flag_relu : {false, true}) {
            for (auto& c : {1, 3, 5, 8, 16, 32}) {
              std::vector<DDim> dims;
              DDim weights_dim({c, 1, 5, 5});
              for (auto& batch : {1, 2}) {
                for (auto& h : {1, 3, 15, 19, 28, 32, 75}) {
                  dims.push_back(DDim({batch, c, h, h}));
                }
              }
              test_conv_fp32(dims,
                             weights_dim,
                             c,
                             {stride, stride},
H
HappyAngel 已提交
343
                             {pad, pad, pad, pad},
344 345 346 347
                             {1, 1},
                             flag_bias,
                             flag_relu,
                             {1, 2, 4},
348
                             {FLAGS_power_mode});
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
            }
          }
        }
      }
    }
  }
}
#endif  /// 5x5dw

#if 1  /// conv1x1s1
TEST(TestConv1x1s1, test_conv1x1s1) {
  if (FLAGS_basic_test) {
    for (auto& cin : {1, 3, 8, 11, 32}) {
      for (auto& cout : {1, 5, 16, 37}) {
        for (auto& g : {1, 2}) {
          for (auto& flag_bias : {false, true}) {
            for (auto& flag_relu : {false, true}) {
              std::vector<DDim> dims;
              if (cin % g != 0 || cout % g != 0) {
                continue;
              }
              DDim weights_dim({cout, cin / g, 1, 1});
              for (auto& batch : {1, 2}) {
                for (auto& h : {1, 7, 19, 28, 32, 56, 1}) {
                  dims.push_back(DDim({batch, cin, h, h}));
                }
              }
              test_conv_fp32(dims,
                             weights_dim,
                             g,
                             {1, 1},
H
HappyAngel 已提交
380
                             {0, 0, 0, 0},
381 382 383 384
                             {1, 1},
                             flag_bias,
                             flag_relu,
                             {1, 2, 4},
385
                             {FLAGS_power_mode});
386 387 388 389 390 391 392 393 394 395 396 397 398 399
            }
          }
        }
      }
    }
  }
}
#endif  /// conv1x1s1

#if 1  /// conv3x3s1
TEST(TestConv3x3s1, test_conv_3x3s1) {
  if (FLAGS_basic_test) {
    for (auto& cin : {1, 3, 8, 32, 48}) {
      for (auto& cout : {1, 5, 8, 32, 48}) {
H
HappyAngel 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        for (auto& pad_left : {1, 2}) {
          for (auto& pad_right : {1, 2}) {
            for (auto& pad_top : {1, 2}) {
              for (auto& pad_bottom : {1, 2}) {
                for (auto& flag_bias : {false, true}) {
                  for (auto& flag_relu : {false, true}) {
                    std::vector<DDim> dims;
                    DDim weights_dim({cout, cin, 3, 3});
                    for (auto& batch : {1, 2}) {
                      for (auto& h : {1, 7, 19, 56, 32}) {
                        dims.push_back(DDim({batch, cin, h, h}));
                      }
                    }
                    test_conv_fp32(dims,
                                   weights_dim,
                                   1,
                                   {1, 1},
                                   {pad_top, pad_bottom, pad_left, pad_right},
                                   {1, 1},
                                   flag_bias,
                                   flag_relu,
                                   {1, 2, 4},
                                   {FLAGS_power_mode});
                  }
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// conv3x3s1

#if 1  /// conv3x3s2
TEST(TestConv3x3s2, test_conv_3x3s2) {
  if (FLAGS_basic_test) {
    for (auto& cin : {1, 3, 8, 32}) {
      for (auto& cout : {1, 5, 8, 32}) {
H
HappyAngel 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
        for (auto& pad_left : {1, 2}) {
          for (auto& pad_right : {1, 2}) {
            for (auto& pad_top : {1, 2}) {
              for (auto& pad_bottom : {1, 2}) {
                for (auto& flag_bias : {false, true}) {
                  for (auto& flag_relu : {false, true}) {
                    std::vector<DDim> dims;
                    DDim weights_dim({cout, cin, 3, 3});
                    for (auto& batch : {1, 2}) {
                      for (auto& h : {1, 7, 19, 28, 75, 56, 32}) {
                        dims.push_back(DDim({batch, cin, h, h}));
                      }
                    }
                    test_conv_fp32(dims,
                                   weights_dim,
                                   1,
                                   {2, 2},
                                   {pad_top, pad_bottom, pad_left, pad_right},
                                   {1, 1},
                                   flag_bias,
                                   flag_relu,
                                   {1, 2, 4},
                                   {FLAGS_power_mode});
                  }
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// conv3x3s2

#if 1  /// random param conv
TEST(TestConvRand, test_conv_rand) {
  if (FLAGS_basic_test) {
    for (auto& cin : {1, 3, 8, 16}) {
      for (auto& cout : {1, 5, 8, 16}) {
        for (auto& g : {1, 2}) {
          for (auto& kw : {1, 2, 3}) {
            for (auto& kh : {1, 2, 3}) {
              for (auto& stride : {1, 2}) {
H
HappyAngel 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
                for (auto& pad_left : {0, 1, 2}) {
                  for (auto& pad_right : {0, 1, 2}) {
                    for (auto& pad_top : {0, 1, 2}) {
                      for (auto& pad_bottom : {0, 1, 2}) {
                        for (auto& dila : {1, 2}) {
                          for (auto& flag_bias : {false, true}) {
                            for (auto& flag_relu : {false, true}) {
                              if (cin % g != 0 || cout % g != 0) {
                                continue;
                              }
                              std::vector<DDim> dims;
                              DDim weights_dim({cout, cin / g, kh, kw});
                              for (auto& batch : {1, 2}) {
                                for (auto& h : {1, 3, 19, 32, 28}) {
                                  dims.push_back(DDim({batch, cin, h, h}));
                                }
                              }
                              test_conv_fp32(
                                  dims,
                                  weights_dim,
                                  g,
                                  {stride, stride},
                                  {pad_top, pad_bottom, pad_left, pad_right},
                                  {dila, dila},
                                  flag_bias,
                                  flag_relu,
                                  {1, 2, 4},
                                  {FLAGS_power_mode});
                            }
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
                          }
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// random param conv

#if 1  /// custom
TEST(TestConvCustom, test_conv_fp32_custom_size) {
  CHECK_EQ(FLAGS_in_channel % FLAGS_group, 0)
      << "input channel must be divided by group";
  CHECK_EQ(FLAGS_out_channel % FLAGS_group, 0)
      << "num_output must be divided by group";
  test_conv_fp32(
      {DDim({FLAGS_batch, FLAGS_in_channel, FLAGS_in_height, FLAGS_in_width})},
      DDim({FLAGS_out_channel,
            FLAGS_in_channel / FLAGS_group,
            FLAGS_kernel_h,
            FLAGS_kernel_w}),
      FLAGS_group,
      {FLAGS_stride_h, FLAGS_stride_w},
H
HappyAngel 已提交
543
      {FLAGS_pad_h, FLAGS_pad_h, FLAGS_pad_w, FLAGS_pad_w},
544 545 546 547
      {FLAGS_dila_h, FLAGS_dila_w},
      FLAGS_flag_bias,
      FLAGS_flag_relu,
      {FLAGS_threads},
548
      {FLAGS_power_mode});
549 550
}
#endif  // custom