fc_buffer_compute.cc 5.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
16
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
17 18
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
19
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
#include "lite/utils/string.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class FcCompute
    : public KernelLite<TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
 public:
  using param_t = operators::FcParam;

34
  void PrepareForRun() override {}
Y
Yan Chunwei 已提交
35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  void ReInitWhenNeeded() override {
    fc_param_ = param_.get_mutable<param_t>();
    const auto x_dims = fc_param_->input->dims();
    if ((!first_epoch_for_reinit_ && x_dims != last_x_dims_) ||
        first_epoch_for_reinit_) {
      last_x_dims_ = x_dims;
      first_epoch_for_reinit_ = false;

      // compute m,n,k
      const auto w_dims = fc_param_->w->dims();
      CHECK_GE(x_dims.size(), 2UL);
      CHECK_GE(w_dims.size(), 2UL);
      CHECK_EQ(fc_param_->output->dims().size(), 2UL);

      m_ = x_dims.Slice(0, fc_param_->in_num_col_dims).production();
      k_ = x_dims.Slice(fc_param_->in_num_col_dims, x_dims.size()).production();
      n_ = w_dims[1];
      CHECK_EQ(k_, static_cast<int>(w_dims[0]));

#ifndef LITE_SHUTDOWN_LOG
      VLOG(4) << "x_dims:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2]
              << " " << x_dims[3];
      VLOG(4) << "w_dims:" << w_dims[0] << " " << w_dims[1] << " " << w_dims[2]
              << " " << w_dims[3];
      VLOG(4) << "m_: " << m_ << " n_: " << n_ << " k_: " << k_;
#endif

      // choose kernel
      if (m_ == 1) {  // gemv
        kernel_func_name_ = "fc_gemv_1x4";
      } else {  // gemm
        kernel_func_name_ = "fc_gemm_4x4";
      }
#ifndef LITE_SHUTDOWN_LOG
      VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
#endif

      if (fc_param_->activation_type == "relu") {
        build_options_ += "-DRELU";
      }

      auto& context = ctx_->As<OpenCLContext>();
78 79 80 81
      context.cl_context()->AddKernel(kernel_func_name_,
                                      "buffer/fc_kernel.cl",
                                      build_options_,
                                      time_stamp_);
82
      STL::stringstream kernel_key;
83
      kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
84 85 86 87 88 89 90 91
      kernel_ = context.cl_context()->GetKernel(kernel_key.str());

      // compute global work size
      GetGlobalWorkSize();
    }
  }

  void GetGlobalWorkSize() {
Y
Yan Chunwei 已提交
92 93 94 95 96 97 98 99 100
    if (m_ == 1) {  // gemv
      global_work_size_ = cl::NDRange{static_cast<size_t>((n_ + 3) / 4)};
    } else {  // gemm
      global_work_size_ = cl::NDRange{static_cast<size_t>((m_ + 3) / 4),
                                      static_cast<size_t>((n_ + 3) / 4)};
    }
  }

  void Run() override {
101 102 103
    auto* x_buf = fc_param_->input->data<float, cl::Buffer>();
    auto* w_buf = fc_param_->w->data<float, cl::Buffer>();
    auto* bias_buf = fc_param_->bias->data<float, cl::Buffer>();
Y
Yan Chunwei 已提交
104
    auto* out_buf =
105
        fc_param_->output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
Y
Yan Chunwei 已提交
106

107
    auto kernel = kernel_;
Y
Yan Chunwei 已提交
108
    cl_int status;
109
    status = kernel.setArg(0, *x_buf);
Y
Yan Chunwei 已提交
110
    CL_CHECK_FATAL(status);
111
    status = kernel.setArg(1, *w_buf);
Y
Yan Chunwei 已提交
112
    CL_CHECK_FATAL(status);
113
    status = kernel.setArg(2, *bias_buf);
Y
Yan Chunwei 已提交
114
    CL_CHECK_FATAL(status);
115
    status = kernel.setArg(3, *out_buf);
Y
Yan Chunwei 已提交
116
    CL_CHECK_FATAL(status);
117
    status = kernel.setArg(4, static_cast<const int>(m_));
Y
Yan Chunwei 已提交
118
    CL_CHECK_FATAL(status);
119
    status = kernel.setArg(5, static_cast<const int>(n_));
Y
Yan Chunwei 已提交
120
    CL_CHECK_FATAL(status);
121
    status = kernel.setArg(6, static_cast<const int>(k_));
Y
Yan Chunwei 已提交
122 123
    CL_CHECK_FATAL(status);

124 125
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
X
xiebaiyuan 已提交
126

Y
Yan Chunwei 已提交
127 128 129 130 131 132
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size_,
        cl::NullRange,
        nullptr,
X
xiebaiyuan 已提交
133
        nullptr);
Y
Yan Chunwei 已提交
134 135 136 137 138
    CL_CHECK_FATAL(status);
  }

 private:
  int m_, n_, k_;
139
  param_t* fc_param_{nullptr};
Y
Yan Chunwei 已提交
140
  std::string kernel_func_name_{};
141
  std::string build_options_{"-DCL_DTYPE_float "};
142
  std::string time_stamp_{GetTimeStamp()};
143 144
  bool first_epoch_for_reinit_{true};
  DDim last_x_dims_;
Y
Yan Chunwei 已提交
145
  cl::NDRange global_work_size_;
146
  cl::Kernel kernel_;
Y
Yan Chunwei 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(
    fc, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::FcCompute, def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("W", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .Finalize();