cxx_api_test.cc 6.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/cxx_api.h"
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/lite_api_test_helper.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"

// For training.
DEFINE_string(startup_program_path, "", "");
DEFINE_string(main_program_path, "", "");

namespace paddle {
namespace lite {

#ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
TEST(CXXApi, test) {
  const lite::Tensor* out = RunHvyModel();
  LOG(INFO) << out << " memory size " << out->data_size();
  for (int i = 0; i < 10; i++) {
    LOG(INFO) << "out " << out->data<float>()[i];
  }
  LOG(INFO) << "dims " << out->dims();
  // LOG(INFO) << "out " << *out;
}

TEST(CXXApi, save_model) {
  lite::Predictor predictor;
46 47
  std::vector<Place> valid_places({Place{TARGET(kX86), PRECISION(kFloat)}});
  predictor.Build(FLAGS_model_dir, "", "", valid_places);
Y
Yan Chunwei 已提交
48 49 50 51 52 53 54 55

  LOG(INFO) << "Save optimized model to " << FLAGS_optimized_model;
  predictor.SaveModel(FLAGS_optimized_model,
                      lite_api::LiteModelType::kProtobuf);
  predictor.SaveModel(FLAGS_optimized_model + ".naive",
                      lite_api::LiteModelType::kNaiveBuffer);
}

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
TEST(CXXApi, clone_predictor) {
  lite::Predictor predictor;
  std::vector<Place> valid_places({Place{TARGET(kX86), PRECISION(kFloat)}});
  predictor.Build(FLAGS_model_dir, "", "", valid_places);
  auto cloned_predictor = predictor.Clone();
  // primary predicotr
  auto* input_tensor = predictor.GetInput(0);
  input_tensor->Resize(std::vector<int64_t>({1, 100}));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < 100; i++) {
    data[i] = 1;
  }

  predictor.Run();
  auto* output_tensor = predictor.GetOutput(0);
  auto output_shape = output_tensor->dims().Vectorize();
  ASSERT_EQ(output_shape.size(), 2);
  ASSERT_EQ(output_shape[0], 1);
  ASSERT_EQ(output_shape[1], 500);

  // cloned predictor
  auto* cloned_input_tensor = cloned_predictor->GetInput(0);
  cloned_input_tensor->Resize(std::vector<int64_t>({1, 100}));
  auto* cloned_data = cloned_input_tensor->mutable_data<float>();
  for (int i = 0; i < 100; i++) {
    cloned_data[i] = 1;
  }
  cloned_predictor->Run();
  auto* cloned_output_tensor = cloned_predictor->GetOutput(0);

  int step = 50;
  for (int i = 0; i < output_tensor->data_size(); i += step) {
    EXPECT_NEAR(output_tensor->data<float>()[i],
                cloned_output_tensor->data<float>()[i],
                1e-6);
  }
}

Y
Yan Chunwei 已提交
94
/*TEST(CXXTrainer, train) {
95 96
  Place place({TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW)});
  std::vector<Place> valid_places({place});
Y
Yan Chunwei 已提交
97 98
  auto scope = std::make_shared<lite::Scope>();

99
  CXXTrainer trainer(scope, valid_places);
Y
Yan Chunwei 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

  std::string main_program_pb, startup_program_pb;
  ReadBinaryFile(FLAGS_main_program_path, &main_program_pb);
  ReadBinaryFile(FLAGS_startup_program_path, &startup_program_pb);
  framework::proto::ProgramDesc main_program_desc, startup_program_desc;
  main_program_desc.ParseFromString(main_program_pb);
  startup_program_desc.ParseFromString(startup_program_pb);

  // LOG(INFO) << main_program_desc.DebugString();

  for (const auto& op : main_program_desc.blocks(0).ops()) {
    LOG(INFO) << "get op " << op.type();
  }

  return;

  trainer.RunStartupProgram(startup_program_desc);
  auto& exe = trainer.BuildMainProgramExecutor(main_program_desc);
  auto* tensor0 = exe.GetInput(0);
  tensor0->Resize(std::vector<int64_t>({100, 100}));
  auto* data0 = tensor0->mutable_data<float>();
  data0[0] = 0;

  exe.Run();
}*/
#endif  // LITE_WITH_LIGHT_WEIGHT_FRAMEWORK

#ifdef LITE_WITH_ARM
TEST(CXXApi, save_model) {
  lite::Predictor predictor;
130 131
  std::vector<Place> valid_places({Place{TARGET(kARM), PRECISION(kFloat)}});
  predictor.Build(FLAGS_model_dir, "", "", valid_places);
Y
Yan Chunwei 已提交
132 133

  LOG(INFO) << "Save optimized model to " << FLAGS_optimized_model;
134 135
  predictor.SaveModel(FLAGS_optimized_model,
                      lite_api::LiteModelType::kProtobuf);
Y
Yan Chunwei 已提交
136 137 138 139 140 141
  predictor.SaveModel(FLAGS_optimized_model + ".naive",
                      lite_api::LiteModelType::kNaiveBuffer);
}

TEST(CXXApi, load_model_naive) {
  lite::Predictor predictor;
142
  std::vector<Place> valid_places({Place{TARGET(kARM), PRECISION(kFloat)}});
143
  predictor.Build(FLAGS_optimized_model + ".naive.nb",
144 145
                  "",
                  "",
Y
Yan Chunwei 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
                  valid_places,
                  {},
                  lite_api::LiteModelType::kNaiveBuffer);

  auto* input_tensor = predictor.GetInput(0);
  input_tensor->Resize(std::vector<int64_t>({1, 100}));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < 100; i++) {
    data[i] = 1;
  }

  predictor.Run();

  std::vector<float> result({0.4350058,
                             -0.6048313,
                             -0.29346266,
                             0.40377066,
                             -0.13400325,
                             0.37114543,
                             -0.3407839,
                             0.14574292,
                             0.4104212,
                             0.8938774});

  auto* output_tensor = predictor.GetOutput(0);
  auto output_shape = output_tensor->dims().Vectorize();
  ASSERT_EQ(output_shape.size(), 2);
  ASSERT_EQ(output_shape[0], 1);
  ASSERT_EQ(output_shape[1], 500);

  int step = 50;
  for (int i = 0; i < result.size(); i += step) {
    EXPECT_NEAR(output_tensor->data<float>()[i], result[i], 1e-6);
  }
}
#endif

}  // namespace lite
}  // namespace paddle