selected_rows_functor.cc 11.1 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <set>

#include "operators/math/math_function.h"
#include "operators/math/selected_rows_functor.h"

namespace paddle_mobile {
namespace operators {
namespace math {
// template <typename T>
// struct SelectedRowsAdd<T> {
//  void operator()(
//                  const framework::SelectedRows& input1,
//                  const framework::SelectedRows& input2,
//                  framework::SelectedRows* output) {
//    auto in1_height = input1.height();
//    PADDLE_MOBILE_ENFORCE(in1_height == input2.height());
//    output->set_height(in1_height);
//
//    auto& in1_rows = input1.rows();
//    auto& in2_rows = input2.rows();
//    std::vector<int64_t> out_rows;
//    out_rows.reserve(in1_rows.size() + in2_rows.size());
//
//    // concat rows
//    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
//    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
//    output->set_rows(out_rows);
//
//    auto* out_value = output->mutable_value();
//    auto& in1_value = input1.value();
//    auto& in2_value = input2.value();
//
//    auto in1_row_numel = in1_value.numel() / in1_rows.size();
//    PADDLE_MOBILE_ENFORCE(in1_row_numel == in2_value.numel() /
//    in2_rows.size());
//      PADDLE_MOBILE_ENFORCE(in1_row_numel == out_value->numel() /
//      out_rows.size());
//
////    auto in1_place = input1.place();
////      PADDLE_MOBILE_ENFORCE(platform::is_cpu_place(in1_place));
////    auto in2_place = input2.place();
////      PADDLE_MOBILE_ENFORCE(platform::is_cpu_place(in2_place));
////    auto out_place = context.GetPlace();
////      PADDLE_MOBILE_ENFORCE(platform::is_cpu_place(out_place));
//
//    auto* out_data = out_value->data<T>();
//    auto* in1_data = in1_value.data<T>();
//    memory::Copy(out_data, in1_data,
//                 in1_value.numel() * sizeof(T));
//
//    auto* in2_data = in2_value.data<T>();
//    memory::Copy(
//                 out_data + in1_value.numel(),
//                 in2_data,
//                 in2_value.numel() * sizeof(T));
//  }
//};
//
// template struct SelectedRowsAdd<float>;
// template struct SelectedRowsAdd<double>;
////
////template <typename T>
////struct SelectedRowsAddTensor<T> {
////  void operator()(
////                  const framework::SelectedRows& input1,
////                  const framework::Tensor& input2, framework::Tensor*
/// output) { /    auto in1_height = input1.height(); /    auto in2_dims =
/// input2.dims(); /    auto out_dims = output->dims(); /
/// PADDLE_MOBILE_ENFORCE(in1_height == in2_dims[0]); /
/// PADDLE_MOBILE_ENFORCE(in1_height == out_dims[0]);
////
////    auto& in1_value = input1.value();
////    auto& in1_rows = input1.rows();
////
////    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
////      PADDLE_MOBILE_ENFORCE(in1_row_numel == input2.numel() / in1_height);
////      PADDLE_MOBILE_ENFORCE(in1_row_numel == output->numel() / in1_height);
////
////    SetConstant<T> functor;
////    functor(output, 0.0);
////
////    auto* in1_data = in1_value.data<T>();
////    auto* out_data = output->data<T>();
////
////    for (size_t i = 0; i < in1_rows.size(); i++) {
////      for (int64_t j = 0; j < in1_row_numel; j++) {
////        out_data[in1_rows[i] * in1_row_numel + j] +=
////            in1_data[i * in1_row_numel + j];
////      }
////    }
////
////    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
////    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
////    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
////  }
////};
////
////template struct SelectedRowsAddTensor< float>;
////template struct SelectedRowsAddTensor<double>;
//
// template <typename T>
// struct SelectedRowsAddTo {
//  void operator()(
//                  const framework::SelectedRows& input1,
//                  const int64_t input2_offset,
//                  framework::SelectedRows* input2) {
//    auto in1_height = input1.height();
//      PADDLE_MOBILE_ENFORCE(in1_height == input2->height());
//
//    auto& in1_rows = input1.rows();
//    auto& in2_rows = *(input2->mutable_rows());
//
//    auto& in1_value = input1.value();
//    auto* in2_value = input2->mutable_value();
//
//    // concat rows
//    in2_rows.Extend(in1_rows.begin(), in1_rows.end());
//
////    auto in1_place = input1.place();
////    PADDLE_ENFORCE(platform::is_cpu_place(in1_place));
////    auto in2_place = input2->place();
////    PADDLE_ENFORCE(platform::is_cpu_place(in2_place));
//
//    auto* in1_data = in1_value.data<T>();
//    auto* in2_data = in2_value->data<T>();
//    memory::Copy(
//                 in2_data + input2_offset,
//                  in1_data,
//                 in1_value.numel() * sizeof(T));
//  }
//};
//
// template struct SelectedRowsAddTo<float>;
// template struct SelectedRowsAddTo<double>;
// template struct SelectedRowsAddTo<int>;
// template struct SelectedRowsAddTo<int64_t>;
//
// template <typename T>
// struct SelectedRowsAddToTensor<T> {
//  void operator()(const framework::SelectedRows& input1,
//                  framework::Tensor* input2) {
//    auto in1_height = input1.height();
//    auto in2_dims = input2->dims();
//      PADDLE_MOBILE_ENFORCE(in1_height == in2_dims[0]);
//
//    auto& in1_value = input1.value();
//    auto& in1_rows = input1.rows();
//
//    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
//      PADDLE_MOBILE_ENFORCE(in1_row_numel == input2->numel() / in1_height);
//
//    auto* in1_data = in1_value.data<T>();
//    auto* input2_data = input2->data<T>();
//
//    for (size_t i = 0; i < in1_rows.size(); i++) {
//      for (int64_t j = 0; j < in1_row_numel; j++) {
//        input2_data[in1_rows[i] * in1_row_numel + j] +=
//            in1_data[i * in1_row_numel + j];
//      }
//    }
//  }
//};
//
// template struct SelectedRowsAddToTensor< float>;
// template struct SelectedRowsAddToTensor<double>;
// template struct SelectedRowsAddToTensor< int>;
// template struct SelectedRowsAddToTensor< int64_t>;
//
//// This is a separated namespace for manipulate SelectedRows typed
//// data. Like merge duplicated rows, adding two SelectedRows etc.
////
//// Another group of functors is called "scatter updates", which means
//// use SelectedRows to update a dense tensor with different Ops, like
//// add or mul.
//
////namespace scatter {
////
////size_t FindPos(const std::vector<int64_t>& rows, int64_t value) {
////  return std::find(rows.begin(), rows.end(), value) - rows.begin();
////}
//
////template <typename T>
////struct MergeAdd<platform::CPUDeviceContext, T> {
////  framework::SelectedRows operator()(const platform::CPUDeviceContext&
/// context, /                                     const
/// framework::SelectedRows&  input) { /    framework::SelectedRows out; / auto
/// input_rows =  input.rows(); /    std::set<int64_t>
/// row_set(input_rows.begin(), input_rows.end()); /    std::vector<int64_t>
/// merge_rows(row_set.begin(), row_set.end());
////
////    auto input_width = input.value().dims()[1];
////    out.set_rows(merge_rows);
////    out.set_height(input.height());
////    out.mutable_value()->mutable_data<T>(
////        framework::make_ddim(
////            {static_cast<int64_t>(merge_rows.size()), input_width}),
////        context.GetPlace());
////
////    math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
////    constant_functor(context, out.mutable_value(), 0.0);
////
////    auto* out_data = out.mutable_value()->data<T>();
////    auto* input_data = input.value().data<T>();
////
////    for (size_t i = 0; i < input_rows.size(); i++) {
////      size_t out_i = FindPos(merge_rows, input_rows[i]);
////      for (int64_t j = 0; j < input_width; j++) {
////        out_data[out_i * input_width + j] += input_data[i * input_width +
/// j]; /      } /    } /    return out; /  }
////};
////
////template struct MergeAdd<platform::CPUDeviceContext, float>;
////template struct MergeAdd<platform::CPUDeviceContext, double>;
////template struct MergeAdd<platform::CPUDeviceContext, int>;
////template struct MergeAdd<platform::CPUDeviceContext, int64_t>;
////
////template <typename T>
////struct UpdateToTensor<platform::CPUDeviceContext, T> {
////  void operator()(const platform::CPUDeviceContext& context,
////                  const ScatterOps& op, const framework::SelectedRows&
/// input1, /                  framework::Tensor* input2) { /    auto in1_height
///= input1.height(); /    auto in2_dims = input2->dims(); /
/// PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);
////
////    auto& in1_value = input1.value();
////    auto& in1_rows = input1.rows();
////
////    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
////    PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);
////
////    auto* in1_data = in1_value.data<T>();
////    auto* input2_data = input2->data<T>();
////
////    // FIXME(typhoonzero): use macro fix the below messy code.
////    switch (op) {
////      case ScatterOps::ASSIGN:
////        INLINE_FOR2(in1_rows.size(), in1_row_numel)
////        input2_data[in1_rows[i] * in1_row_numel + j] =
////            in1_data[i * in1_row_numel + j];
////        break;
////      case ScatterOps::ADD:
////        INLINE_FOR2(in1_rows.size(), in1_row_numel)
////        input2_data[in1_rows[i] * in1_row_numel + j] +=
////            in1_data[i * in1_row_numel + j];
////        break;
////      case ScatterOps::SUB:
////        INLINE_FOR2(in1_rows.size(), in1_row_numel)
////        input2_data[in1_rows[i] * in1_row_numel + j] -=
////            in1_data[i * in1_row_numel + j];
////        break;
////      case ScatterOps::SUBBY:
////        INLINE_FOR2(in1_rows.size(), in1_row_numel)
////        input2_data[in1_rows[i] * in1_row_numel + j] =
////            in1_data[i * in1_row_numel + j] -
////            input2_data[in1_rows[i] * in1_row_numel + j];
////        break;
////      case ScatterOps::MUL:
////        INLINE_FOR2(in1_rows.size(), in1_row_numel)
////        input2_data[in1_rows[i] * in1_row_numel + j] *=
////            in1_data[i * in1_row_numel + j];
////        break;
////      case ScatterOps::DIV:
////        INLINE_FOR2(in1_rows.size(), in1_row_numel)
////        input2_data[in1_rows[i] * in1_row_numel + j] /=
////            in1_data[i * in1_row_numel + j];
////        break;
////      case ScatterOps::DIVBY:
////        INLINE_FOR2(in1_rows.size(), in1_row_numel)
////        input2_data[in1_rows[i] * in1_row_numel + j] =
////            in1_data[i * in1_row_numel + j] /
////            input2_data[in1_rows[i] * in1_row_numel + j];
////        break;
////    }
////  }
////};
//
//  // namespace scatter
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile