layout_compute_test.cc 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <random>
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/kernels/opencl/image_helper.h"

namespace paddle {
namespace lite {

// #define LOOP_TEST
// #define PRINT_RESULT
TEST(layout, compute) {
  LOG(INFO) << "main steps of test: host -> layout(buf2img) -> layout(img2buf) "
               "-> device";

#ifdef LOOP_TEST
  for (int n = 1; n <= 100; n += 21) {
    for (auto c : {1, 3}) {
      for (int h = 1; h <= 100; h += 13) {
        for (int w = 1; w <= 100; w += 17) {
#else
  const int n = 1;
  const int c = 1;
  const int h = 1;
  const int w = 100;
#endif  // LOOP_TEST

          LOG(INFO) << "======== input shape[n,c,h,w]:" << n << " " << c << " "
                    << h << " " << w << " ========";
          // set layout kernels
          auto buf_to_img_kernels = KernelRegistry::Global().Create(
              "layout", TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNHWC));
          auto img_to_buf_kernels = KernelRegistry::Global().Create(
              "layout", TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW));
          ASSERT_FALSE(buf_to_img_kernels.empty());
          ASSERT_FALSE(buf_to_img_kernels.empty());

          auto buf_to_img_kernel = std::move(buf_to_img_kernels.front());
          auto img_to_buf_kernel = std::move(img_to_buf_kernels.front());
          LOG(INFO) << "get 1st kernel: " << buf_to_img_kernel->doc();
          LOG(INFO) << "get 2nd kernel: " << img_to_buf_kernel->doc();

          // set tensors about op param
          LOG(INFO) << "set tensors about op param";
          lite::Tensor x, y_image, y;
          operators::LayoutParam BufferToImageParam;
          operators::LayoutParam ImageToBufferParam;
          BufferToImageParam.x = &x;
          BufferToImageParam.y = &y_image;
          ImageToBufferParam.x = &y_image;
          ImageToBufferParam.y = &y;

          const DDim x_dim = DDim(std::vector<DDim::value_type>{n, c, h, w});
          x.Resize(x_dim);
          y_image.Resize(x_dim);  // useless for image2D
          y.Resize(x_dim);

          // initialize tensors
          LOG(INFO) << "initialize tensors";
          auto* x_data = x.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
          auto* y_data = y.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
          auto image_shape =
              paddle::lite::kernels::opencl::InitImageDimInfoWith(x_dim);
          auto* y_image_data = y_image.mutable_data<float, cl::Image2D>(
              image_shape["width"], image_shape["height"]);
          auto* mapped_x = static_cast<float*>(TargetWrapperCL::Map(
              x_data, 0, sizeof(float) * x_dim.production()));
          auto* mapped_y = static_cast<float*>(TargetWrapperCL::Map(
              y_data, 0, sizeof(float) * x_dim.production()));
          for (int i = 0; i < x_dim.production(); ++i) {
            mapped_x[i] = static_cast<int>(i);
            mapped_y[i] = static_cast<int>(0);
          }

          // set context and kernel args
          LOG(INFO) << "set context and kernel args";
          std::unique_ptr<KernelContext> context(new KernelContext);
          context->As<OpenCLContext>().InitOnce();

          buf_to_img_kernel->SetParam(BufferToImageParam);
          std::unique_ptr<KernelContext> buf_to_img_context(new KernelContext);
          context->As<OpenCLContext>().CopySharedTo(
              &(buf_to_img_context->As<OpenCLContext>()));
          buf_to_img_kernel->SetContext(std::move(buf_to_img_context));

          img_to_buf_kernel->SetParam(ImageToBufferParam);
          std::unique_ptr<KernelContext> img_to_buf_context(new KernelContext);
          context->As<OpenCLContext>().CopySharedTo(
              &(img_to_buf_context->As<OpenCLContext>()));
          img_to_buf_kernel->SetContext(std::move(img_to_buf_context));

          // run kernels
          LOG(INFO) << "run kernel: buf_to_img_kernel";
          buf_to_img_kernel->Launch();
          LOG(INFO) << "run kernel: img_to_buf_kernel";
          img_to_buf_kernel->Launch();

// result
#ifdef PRINT_RESULT
          LOG(INFO) << "---- print result ----";
          for (int eidx = 0; i < x_dim.production(); ++eidx) {
            std::cout << mapped_x[eidx] << " -> " << mapped_y[eidx]
                      << std::endl;
          }
#endif  // PRINT_RESULT

          // check result: compare input and output
          for (int eidx = 0; eidx < x_dim.production(); eidx++) {
            EXPECT_NEAR(mapped_x[eidx], mapped_y[eidx], 1e-6);
            if (abs(mapped_x[eidx] - mapped_y[eidx]) > 1e-6) {
              LOG(INFO) << "1st diff in this case at eidx[from 0]:" << eidx
                        << " / " << x_dim.production() << ", mapped_x[" << eidx
                        << "]:" << mapped_x[eidx] << ", mapped_y[" << eidx
                        << "]:" << mapped_y[eidx];
              break;
            }
          }

          // free
          LOG(INFO) << "free: unmap x, y";
          TargetWrapperCL::Unmap(x_data, mapped_x);
          TargetWrapperCL::Unmap(y_data, mapped_y);
#ifdef LOOP_TEST
        }  // w
      }    // h
    }      // c
  }        // n
#else
// nothing to do.
#endif
}

}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(
    layout, kOpenCL, kFloat, kNHWC, buffer_chw_to_image2d_hwc_opencl_fp32);
USE_LITE_KERNEL(
    layout, kOpenCL, kFloat, kNCHW, image2d_hwc_to_buffer_chw_opencl_fp32);