paddle_mobile_jni.cpp 3.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef ANDROID

#include "paddle_mobile_jni.h"
18 19 20 21
#include "common/log.h"
#include "framework/tensor.h"
#include "io/paddle_mobile.h"

W
wangliu 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34
#ifdef __cplusplus
extern "C" {
#endif
namespace paddle_mobile {
namespace jni {
using framework::DDim;
using framework::Program;
using framework::Tensor;
using paddle_mobile::CPU;
using std::string;

extern const char *ANDROID_LOG_TAG =
    "paddle_mobile LOG built on " __DATE__ " " __TIME__;
35
static PaddleMobile<CPU> *shared_paddle_mobile_instance = nullptr;
W
wangliu 已提交
36 37 38 39

// toDo mutex lock
// static std::mutex shared_mutex;

40 41 42
PaddleMobile<CPU> *getPaddleMobileInstance() {
  if (nullptr == shared_paddle_mobile_instance) {
    shared_paddle_mobile_instance = new PaddleMobile<CPU>();
W
wangliu 已提交
43
  }
44
  return shared_paddle_mobile_instance;
W
wangliu 已提交
45 46 47 48 49 50 51 52 53 54 55 56
}

string jstring2cppstring(JNIEnv *env, jstring jstr) {
  const char *cstr = env->GetStringUTFChars(jstr, 0);
  string cppstr(cstr);
  env->ReleaseStringUTFChars(jstr, cstr);
  return cppstr;
}

JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_load(JNIEnv *env,
                                                          jclass thiz,
                                                          jstring modelPath) {
57
  ANDROIDLOGI("load invoked");
W
wangliu 已提交
58
  bool optimize = true;
59 60
  return getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
                                         optimize);
W
wangliu 已提交
61 62
}

63 64 65 66 67 68 69 70 71
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombined(
    JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath) {
  ANDROIDLOGI("load invoked");
  bool optimize = true;
  return getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
                                         jstring2cppstring(env, paramPath),
                                         optimize);
}

72 73
JNIEXPORT jfloatArray JNICALL
Java_com_baidu_paddle_PML_predict(JNIEnv *env, jclass thiz, jfloatArray buf) {
W
wangliu 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86
  jfloatArray result = NULL;
  int count = 0;
  float *dataPointer = nullptr;
  if (nullptr != buf) {
    dataPointer = env->GetFloatArrayElements(buf, NULL);
  }
  framework::Tensor input;
  framework::DDim ddim = framework::make_ddim({1, 3, 224, 224});
  input.Resize(ddim);
  auto input_ptr = input.mutable_data<float>();
  for (int i = 0; i < framework::product(ddim); i++) {
    input_ptr[i] = dataPointer[i];
  }
87
  auto output = shared_paddle_mobile_instance->Predict(input);
W
wangliu 已提交
88 89 90
  count = output->numel();
  result = env->NewFloatArray(count);
  env->SetFloatArrayRegion(result, 0, count, output->data<float>());
91
  ANDROIDLOGI("predict finished");
W
wangliu 已提交
92 93 94 95
  return result;
}

JNIEXPORT void JNICALL Java_com_baidu_paddle_PML_clear(JNIEnv *env,
96 97 98
                                                       jclass thiz) {
  getPaddleMobileInstance()->Clear();
}
W
wangliu 已提交
99 100 101 102 103 104 105 106 107

}  // namespace jni
}  // namespace paddle_mobile

#ifdef __cplusplus
}
#endif

#endif