softmax_compute_test.cc 4.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/softmax_compute.h"
#include <gtest/gtest.h>
17
#include <cmath>
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#include <limits>
#include <vector>
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

template <typename dtype>
void softmax_compute_ref(const operators::SoftmaxParam& param) {
  const dtype* x_data = param.x->mutable_data<const dtype>();
  dtype* output_data = param.output->mutable_data<dtype>();
  DDim x_dims = param.x->dims();
  ASSERT_EQ(x_dims.data(), param.output->dims().data());
  auto x_rank = x_dims.size();
  int axis = param.axis;
  if (axis < 0) {
    axis += x_rank;
  }
  int axis_size = x_dims[axis];
  int outer_num = x_dims.Slice(0, axis).production();
  int inner_num = x_dims.Slice(axis + 1, x_rank).production();
  int compute_size = outer_num * inner_num;
  for (int i = 0; i < compute_size; i++) {
    int idx_inner = i % inner_num;
    int idx_outer = (i / inner_num) * axis_size;
    int start = idx_outer * inner_num + idx_inner;
    int offset;

    offset = start;
    dtype max_data = std::numeric_limits<dtype>::lowest();
    for (int j = 0; j < axis_size; j++) {
      max_data = x_data[offset] > max_data ? x_data[offset] : max_data;
      offset += inner_num;
    }

    offset = start;
    dtype sum_data = (dtype)0;
    for (int j = 0; j < axis_size; j++) {
      output_data[offset] = exp(x_data[offset] - max_data);
      sum_data += output_data[offset];
      offset += inner_num;
    }

    offset = start;
    for (int j = 0; j < axis_size; j++) {
      output_data[offset] /= sum_data;
      offset += inner_num;
    }
  }
}

TEST(softmax_arm, init) {
  SoftmaxCompute softmax;
  ASSERT_EQ(softmax.precision(), PRECISION(kFloat));
  ASSERT_EQ(softmax.target(), TARGET(kARM));
}

TEST(softmax_arm, compute) {
  SoftmaxCompute softmax;
  operators::SoftmaxParam param;

  lite::Tensor x;
  lite::Tensor output;
  lite::Tensor output_ref;
#if 1
  for (auto n : {1, 3}) {
    for (auto c : {1, 4}) {
      for (auto h : {5, 1}) {
        for (auto w : {1, 6}) {
          for (auto axis : {-2, -1, 0, 1, 2}) {
#else
  for (auto n : {1, 3, 4, 11}) {
    for (auto c : {1, 3, 11, 4}) {
      for (auto h : {3, 1, 11, 4}) {
        for (auto w : {1, 3, 4, 12}) {
          for (auto axis : {-4, -3, -2, -1, 0, 1, 2, 3}) {
#endif
            x.Resize(DDim(std::vector<int64_t>({n, c, h, w})));
            output.Resize(DDim(std::vector<int64_t>({n, c, h, w})));
            output_ref.Resize(DDim(std::vector<int64_t>({n, c, h, w})));
            auto* x_data = x.mutable_data<float>();
            auto* output_data = output.mutable_data<float>();
            auto* output_ref_data = output_ref.mutable_data<float>();
            for (int i = 0; i < x.dims().production(); i++) {
              x_data[i] = i;
            }
            param.x = &x;
            param.axis = axis;
            param.output = &output;
            softmax.SetParam(param);
            softmax.Run();
            param.output = &output_ref;
            softmax_compute_ref<float>(param);
            for (int i = 0; i < output.dims().production(); i++) {
              EXPECT_NEAR(output_data[i], output_ref_data[i], 1e-5);
            }
          }
        }
      }
    }
  }
}

TEST(softmax, retrive_op) {
  auto softmax =
      KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>(
          "softmax");
  ASSERT_FALSE(softmax.empty());
  ASSERT_TRUE(softmax.front());
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(softmax, kARM, kFloat, kNCHW, def);