decode_bboxes_compute_test.cc 7.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/decode_bboxes_compute.h"
#include <gtest/gtest.h>
17
#include <cmath>
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
#include <string>
#include <vector>
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

template <typename dtype>
void decode_bboxes_compute_ref(const operators::DecodeBboxesParam& param) {
  const dtype* loc_data = param.loc_data->data<const dtype>();
  const dtype* prior_data = param.prior_data->data<const dtype>();
  dtype* bbox_data = param.bbox_data->mutable_data<dtype>();

  for (int n = 0; n < param.batch_num; ++n) {
    const dtype* ptr_loc_batch = loc_data + n * param.num_priors * 4;
    dtype* ptr_bbox_batch = bbox_data + n * param.num_priors * 4;
    for (int i = 0; i < param.num_priors; ++i) {
      int idx = i * 4;
      const dtype* ptr_loc = ptr_loc_batch + idx;
      const dtype* ptr_prior = prior_data + idx;
      dtype* ptr_bbox = ptr_bbox_batch + idx;

      dtype p_xmin = ptr_prior[0];
      dtype p_ymin = ptr_prior[1];
      dtype p_xmax = ptr_prior[2];
      dtype p_ymax = ptr_prior[3];
      dtype prior_width = p_xmax - p_xmin;
      dtype prior_height = p_ymax - p_ymin;
      dtype prior_center_x = (p_xmin + p_xmax) / 2.f;
      dtype prior_center_y = (p_ymin + p_ymax) / 2.f;

      dtype xmin = ptr_loc[0];
      dtype ymin = ptr_loc[1];
      dtype xmax = ptr_loc[2];
      dtype ymax = ptr_loc[3];

      if (param.code_type == "corner") {
        if (param.variance_encoded_in_target) {
          ptr_bbox[0] = ptr_loc[0] + ptr_prior[0];
          ptr_bbox[1] = ptr_loc[1] + ptr_prior[1];
          ptr_bbox[2] = ptr_loc[2] + ptr_prior[2];
          ptr_bbox[3] = ptr_loc[3] + ptr_prior[3];
        } else {
          const dtype* variance_data = prior_data + 4 * param.num_priors;
          const dtype* ptr_var = variance_data + idx;
          ptr_bbox[0] = ptr_var[0] * ptr_loc[0] + ptr_prior[0];
          ptr_bbox[1] = ptr_var[1] * ptr_loc[1] + ptr_prior[1];
          ptr_bbox[2] = ptr_var[2] * ptr_loc[2] + ptr_prior[2];
          ptr_bbox[3] = ptr_var[3] * ptr_loc[3] + ptr_prior[3];
        }
      } else if (param.code_type == "center_size") {
        dtype decode_bbox_center_x;
        dtype decode_bbox_center_y;
        dtype decode_bbox_width;
        dtype decode_bbox_height;
        if (param.variance_encoded_in_target) {
          //! variance is encoded in target, we simply need to retore the offset
          //! predictions.
          decode_bbox_center_x = xmin * prior_width + prior_center_x;
          decode_bbox_center_y = ymin * prior_height + prior_center_y;
          decode_bbox_width = std::exp(xmax) * prior_width;
          decode_bbox_height = std::exp(ymax) * prior_height;
        } else {
          const dtype* variance_data = prior_data + 4 * param.num_priors;
          const dtype* ptr_var = variance_data + idx;
          decode_bbox_center_x =
              ptr_var[0] * xmin * prior_width + prior_center_x;
          decode_bbox_center_y =
              ptr_var[1] * ymin * prior_height + prior_center_y;
          decode_bbox_width = std::exp(ptr_var[2] * xmax) * prior_width;
          decode_bbox_height = std::exp(ptr_var[3] * ymax) * prior_height;
        }
        ptr_bbox[0] = decode_bbox_center_x - decode_bbox_width / 2.f;
        ptr_bbox[1] = decode_bbox_center_y - decode_bbox_height / 2.f;
        ptr_bbox[2] = decode_bbox_center_x + decode_bbox_width / 2.f;
        ptr_bbox[3] = decode_bbox_center_y + decode_bbox_height / 2.f;
      } else if (param.code_type == "corner_size") {
        if (param.variance_encoded_in_target) {
          ptr_bbox[0] = p_xmin + ptr_loc[0] * prior_width;
          ptr_bbox[1] = p_ymin + ptr_loc[1] * prior_height;
          ptr_bbox[2] = p_xmax + ptr_loc[2] * prior_width;
          ptr_bbox[3] = p_ymax + ptr_loc[3] * prior_height;
        } else {
          const dtype* variance_data = prior_data + 4 * param.num_priors;
          const dtype* ptr_var = variance_data + idx;
          ptr_bbox[0] = p_xmin + ptr_loc[0] * ptr_var[0] * prior_width;
          ptr_bbox[1] = p_ymin + ptr_loc[1] * ptr_var[1] * prior_width;
          ptr_bbox[2] = p_xmax + ptr_loc[2] * ptr_var[2] * prior_width;
          ptr_bbox[3] = p_ymax + ptr_loc[3] * ptr_var[3] * prior_width;
        }
      } else {
        LOG(FATAL) << "unsupported code type: " << param.code_type;
      }
    }
  }
}

TEST(decode_bboxes_arm, retrive_op) {
  auto decode_bboxes =
      KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>(
          "decode_bboxes");
  ASSERT_FALSE(decode_bboxes.empty());
  ASSERT_TRUE(decode_bboxes.front());
}

TEST(decode_bboxes_arm, init) {
  DecodeBboxesCompute decode_bboxes;
  ASSERT_EQ(decode_bboxes.precision(), PRECISION(kFloat));
  ASSERT_EQ(decode_bboxes.target(), TARGET(kARM));
}

TEST(decode_bboxes_arm, compute) {
  DecodeBboxesCompute decode_bboxes;
  operators::DecodeBboxesParam param;
  lite::Tensor loc, prior, bbox, bbox_ref;

  for (int batch_num : {1, 2, 3, 4}) {
    for (int num_priors : {1, 3, 4, 8, 10}) {
      for (std::string code_type : {"corner", "center_size", "corner_size"}) {
        for (bool variance_encoded_in_target : {true, false}) {
          auto loc_dim =
              DDim(std::vector<int64_t>({batch_num, num_priors * 4}));
          loc.Resize(loc_dim);
          auto prior_dim = DDim(std::vector<int64_t>({1, 2, num_priors * 4}));
          prior.Resize(prior_dim);
          bbox.Resize(loc_dim);
          bbox_ref.Resize(loc_dim);
          auto* loc_data = loc.mutable_data<float>();
          auto* prior_data = prior.mutable_data<float>();
          auto* bbox_data = bbox.mutable_data<float>();
          auto* bbox_ref_data = bbox_ref.mutable_data<float>();

          for (int i = 0; i < loc_dim.production(); ++i) {
            loc_data[i] = i * 1. / loc_dim.production();
          }
          for (int i = 0; i < prior_dim.production(); ++i) {
            prior_data[i] = i * 1. / prior_dim.production();
          }

          param.loc_data = &loc;
          param.prior_data = &prior;
          param.bbox_data = &bbox;
          param.num_loc_classes = 0;
          param.share_location = true;
          param.batch_num = batch_num;
          param.num_priors = num_priors;
          param.code_type = code_type;
          param.variance_encoded_in_target = variance_encoded_in_target;
          decode_bboxes.SetParam(param);
          decode_bboxes.Run();
          param.bbox_data = &bbox_ref;
          decode_bboxes_compute_ref<float>(param);
          for (int i = 0; i < bbox.dims().production(); i++) {
            EXPECT_NEAR(bbox_data[i], bbox_ref_data[i], 1e-5);
          }
        }
      }
    }
  }
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(decode_bboxes, kARM, kFloat, kNCHW, def);