fc_buffer_compute.cc 4.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
16
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
#include "lite/utils/string.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class FcCompute
    : public KernelLite<TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
 public:
  using param_t = operators::FcParam;

  void PrepareForRun() override {
    const auto& param = *param_.get_mutable<param_t>();
    const auto x_dims = param.input->dims();
    const auto w_dims = param.w->dims();

    CHECK_GE(x_dims.size(), 2UL);
    CHECK_GE(w_dims.size(), 2UL);
    CHECK_EQ(param.output->dims().size(), 2UL);

    m_ = x_dims.Slice(0, param.in_num_col_dims).production();
    k_ = x_dims.Slice(param.in_num_col_dims, x_dims.size()).production();
    n_ = w_dims[1];
    CHECK_EQ(k_, static_cast<int>(w_dims[0]));
    VLOG(4) << "x_dims:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2]
            << " " << x_dims[3];
    VLOG(4) << "w_dims:" << w_dims[0] << " " << w_dims[1] << " " << w_dims[2]
            << " " << w_dims[3];
    VLOG(4) << "m_: " << m_ << " n_: " << n_ << " k_: " << k_;

    if (m_ == 1) {  // gemv
      kernel_func_name_ = "fc_gemv_1x4";
      global_work_size_ = cl::NDRange{static_cast<size_t>((n_ + 3) / 4)};
    } else {  // gemm
      kernel_func_name_ = "fc_gemm_4x4";
      global_work_size_ = cl::NDRange{static_cast<size_t>((m_ + 3) / 4),
                                      static_cast<size_t>((n_ + 3) / 4)};
    }
60
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
61 62 63 64

    if (param.activation_type == "relu") {
      build_options_ += "-DRELU";
    }
Y
Yan Chunwei 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "buffer/fc_kernel.cl", build_options_);
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    auto* x_buf = param.input->data<float, cl::Buffer>();
    auto* w_buf = param.w->data<float, cl::Buffer>();
    auto* bias_buf = param.bias->data<float, cl::Buffer>();
    auto* out_buf =
        param.output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    cl_int status;
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *w_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *bias_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(m_));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(n_));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(k_));
    CL_CHECK_FATAL(status);

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size_,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_buf, event_);
  }

 private:
  int m_, n_, k_;
  std::string kernel_func_name_{};
115
  std::string build_options_{"-DCL_DTYPE_float "};
Y
Yan Chunwei 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
  cl::NDRange global_work_size_;
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(
    fc, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::FcCompute, def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("W", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .Finalize();