program.cc 18.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/core/program.h"
16
#include <algorithm>
17
#include <map>
18
#include <set>
19
#include "lite/model_parser/cpp_desc.h"
J
juncaipeng 已提交
20
#include "lite/operators/conditional_block_op.h"
21
#include "lite/operators/subgraph_op.h"
Y
Yan Chunwei 已提交
22
#include "lite/operators/while_op.h"
23
#ifdef LITE_WITH_PRECISION_PROFILE
Y
Yan Chunwei 已提交
24 25 26 27 28 29
#include "lite/core/profile/precision_profiler.h"
#endif

namespace paddle {
namespace lite {

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
void RuntimeProgram::SaveToProgram(
    std::shared_ptr<cpp::ProgramDesc> program_desc) {
  CHECK(program_desc);
  auto block_size = program_desc->BlocksSize();
  CHECK_GT(block_size, 0) << "No block found!";
  // TODD(hong19860320) Only support updating the block desc which already
  // exists in the origin program desc
  CHECK_LE(block_size, instructions_.size())
      << "Invalid block size, expected (0," << instructions_.size()
      << "] but got " << block_size;
  for (size_t block_idx = 0; block_idx < block_size; ++block_idx) {
    auto block_desc = program_desc->GetBlock<cpp::BlockDesc>(block_idx);
    // Record all of the origin vars in the origin block
    std::map<std::string, cpp::VarDesc> origin_var_maps;
    auto var_size = block_desc->VarsSize();
    for (size_t var_idx = 0; var_idx < var_size; ++var_idx) {
      auto v = block_desc->GetVar<cpp::VarDesc>(var_idx);
      origin_var_maps.emplace(v->Name(), *v);
    }
    // Update the ops and vars for each block according to the instructions
    block_desc->ClearVars();
    block_desc->ClearOps();
    std::set<std::string> already_added_vars;
    for (auto& inst : instructions_[block_idx]) {
      auto* op = const_cast<OpLite*>(inst.op());
      auto* op_info = op->op_info();
      auto op_type = op_info->Type();
      auto* kernel = inst.mutable_kernel();
      auto* scope = op->scope();
      // Update the origin vars which are referred by the instructions
      // Add the new vars which are created in the passes and referred by the
      // instructions
      auto var_names = op_info->input_names();
      auto out_names = op_info->output_names();
      // Combine input and output vars and delete the duplicates
      var_names.insert(var_names.end(), out_names.begin(), out_names.end());
      std::stable_sort(var_names.begin(), var_names.end());
      var_names.erase(std::unique(var_names.begin(), var_names.end()),
                      var_names.end());
      for (auto& var_name : var_names) {
        if (already_added_vars.count(var_name)) continue;
        auto* v = block_desc->AddVar<cpp::VarDesc>();
        v->SetName(var_name);
        auto it = origin_var_maps.find(var_name);
        if (it != origin_var_maps.end()) {
          v->SetType(it->second.GetType());
          v->SetPersistable(it->second.Persistable());
          if (var_name != "feed" && var_name != "fetch") {
            v->SetShape(it->second.GetShape());
            v->SetDataType(it->second.GetDataType());
          }
        } else {
          std::string arg_name;
          const Type* decl_type;
          if (op_info->GetInputArgname(var_name, &arg_name)) {
            decl_type = kernel->GetInputDeclType(arg_name);
          } else {
            op_info->GetOutputArgname(var_name, &arg_name);
            decl_type = kernel->GetOutputDeclType(arg_name);
          }
          if (decl_type->IsTensor()) {
            v->SetType(cpp::VarDesc::Type::LOD_TENSOR);
            auto tensor = scope->FindVar(var_name)->GetMutable<Tensor>();
            v->SetPersistable(tensor->persistable());
            if (var_name != "feed" && var_name != "fetch") {
              v->SetShape(tensor->dims().data());
              auto precision = tensor->precision();
              switch (precision) {
#define SET_DATATYPE(precision__, data_type)           \
  case PrecisionType::precision__:                     \
    v->SetDataType(data_type);                         \
    LOG(INFO) << "Update var " << var_name << " done"; \
    break
                SET_DATATYPE(kBool, VarDescAPI::VarDataType::BOOL);
                SET_DATATYPE(kFloat, VarDescAPI::VarDataType::FP32);
                SET_DATATYPE(kFP16, VarDescAPI::VarDataType::FP16);
                SET_DATATYPE(kInt8, VarDescAPI::VarDataType::INT8);
                SET_DATATYPE(kInt16, VarDescAPI::VarDataType::INT16);
                SET_DATATYPE(kInt32, VarDescAPI::VarDataType::INT32);
                SET_DATATYPE(kInt64, VarDescAPI::VarDataType::INT64);
#undef SET_DATATYPE
                default:
                  LOG(WARNING) << "Unknown precision type "
                               << PrecisionToStr(precision) << " for var "
                               << var_name << " in op " << op_type;
              }
            }
          } else if (decl_type->IsTensorList()) {
            // Set persistable=false for tensor array
            v->SetType(cpp::VarDesc::Type::LOD_TENSOR_ARRAY);
            v->SetPersistable(false);
          } else {
            CHECK(false) << "Unsupported decl type " << *decl_type
                         << " for var " << var_name << " in op " << op_type;
          }
        }
        already_added_vars.insert(var_name);
      }
      // Replace all of origin ops with the instructions
      auto op_desc = block_desc->AddOp<cpp::OpDesc>();
      *op_desc = *op_info;
      op_desc->SetAttr(kKernelTypeAttr, kernel->SerializedKernelType());
      if (op_type == "subgraph" && !op_info->GetAttr<int32_t>("sub_block")) {
        // It's a new subgraph op when its sub_block_idx = 0, Now we add its
134 135
        // subblock desc to the program desc, Then update its sub_block_idx to
        // the index of block desc of the program desc.
136 137 138 139 140 141 142 143 144 145 146 147 148
        auto subgraph_op = static_cast<operators::SubgraphOp*>(op);
        auto sub_program_desc = subgraph_op->GetProgramDesc();
        CHECK(sub_program_desc);
        auto sub_block_desc = program_desc->AddBlock<cpp::BlockDesc>();
        *sub_block_desc = *sub_program_desc->GetBlock<cpp::BlockDesc>(0);
        subgraph_op->SetProgramDesc(program_desc);
        op_desc->SetAttr<int32_t>("sub_block", program_desc->BlocksSize() - 1);
        // Attach op and kernel again to update the new block_idx and
        // program_desc
        subgraph_op->Attach(*op_desc, scope);
        subgraph_op->AttachKernel(kernel);
        // Update the pointer of block desc after a new subblock desc is added
        block_desc = program_desc->GetBlock<cpp::BlockDesc>(block_idx);
149 150
      }
    }
Y
Yan Chunwei 已提交
151 152 153
  }
}

154 155 156 157 158 159 160 161
// Create runtime program from sub_block desc according to block_idx and
// program_desc, which is used for while/conditional_block/subgraph op.
RuntimeProgram::RuntimeProgram(
    const std::shared_ptr<const cpp::ProgramDesc>& program_desc,
    Scope* exec_scope,
    int block_idx)
    : exec_scope_(exec_scope) {
#ifdef LITE_WITH_OPENCL
162
  bool opencl_valid = CLRuntime::Global()->OpenCLAvaliableForDevice();
163
  using OpenCLContext = Context<TargetType::kOpenCL>;
164 165 166 167
  std::unique_ptr<KernelContext> unique_opencl_ctx(new KernelContext());
  if (opencl_valid) {
    unique_opencl_ctx->As<OpenCLContext>().InitOnce();
  }
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#endif
  CHECK(program_desc);
  auto block_size = program_desc->BlocksSize();
  CHECK(block_size) << "No block found!";
  CHECK(block_idx >= 0 && block_idx < block_size)
      << "Invalid block index, expected [0," << (block_size - 1) << "] but got "
      << block_idx;
  auto block_desc = program_desc->GetBlock<cpp::BlockDesc>(block_idx);
  instructions_.resize(kRootBlockIdx + 1);
  auto op_size = block_desc->OpsSize();
  for (size_t op_idx = 0; op_idx < op_size; op_idx++) {
    auto op_desc = block_desc->GetOp<cpp::OpDesc>(op_idx);
    CHECK(op_desc);
    std::string op_type = op_desc->Type();
    // if (op_type == "feed" || op_type == "fetch") continue;
    // Create op and pick up the best kernel
    auto op = LiteOpRegistry::Global().Create(op_type);
    CHECK(op) << "no Op found for " << op_type;
    if (op_type == "while") {
      static_cast<operators::WhileOp*>(op.get())->SetProgramDesc(program_desc);
    } else if (op_type == "conditional_block") {
      static_cast<operators::ConditionalBlockOp*>(op.get())->SetProgramDesc(
          program_desc);
    } else if (op_type == "subgraph") {
      static_cast<operators::SubgraphOp*>(op.get())->SetProgramDesc(
          program_desc);
    }
    op->Attach(*op_desc, exec_scope_);
    std::unique_ptr<KernelBase> kernel;
    if (op_desc->HasAttr(kKernelTypeAttr)) {
      // Create op and pick up the best kernel according to the
      // kKernelTypeAttr attribute
      auto kernel_type = op_desc->GetAttr<std::string>(kKernelTypeAttr);
      std::string alias;
      Place place;
      KernelBase::ParseKernelType(kernel_type, &op_type, &alias, &place);
      VLOG(3) << "Found the attr '" << kKernelTypeAttr << "': " << kernel_type
              << " for " << op_type;
      auto kernels = op->CreateKernels({place});
      CHECK_GT(kernels.size(), 0) << "No kernels found for " << op_type;
      auto it = std::find_if(
          kernels.begin(), kernels.end(), [&](std::unique_ptr<KernelBase>& it) {
            return it->alias() == alias;
          });
      CHECK(it != kernels.end());
      kernel = std::move(*it);
    } else {
      // TODO(hong19860320) add kernel picking according to the type of input
      // and output tensors
      VLOG(3) << "The attr '" << kKernelTypeAttr
              << "' not found, pick the first kernel for " << op_type;
      std::vector<std::unique_ptr<KernelBase>> kernels;
#if defined(LITE_WITH_ARM)
      kernels = op->CreateKernels({Place{TARGET(kARM)}, Place{TARGET(kHost)}});
#elif defined(LITE_WITH_X86)
      kernels = op->CreateKernels({Place{TARGET(kX86)}, Place{TARGET(kHost)}});
#endif
      if (kernels.size() > 0) {
        kernel = std::move(kernels.front());
227
      } else {
228
        LOG(WARNING) << "No kernels found for " << op_type;
229 230
      }
    }
231 232
#ifdef LITE_WITH_OPENCL
    if (kernel->target() == TARGET(kOpenCL)) {
233 234 235 236 237 238 239 240 241
      if (opencl_valid) {
        std::unique_ptr<KernelContext> ctx(new KernelContext());
        (*unique_opencl_ctx)
            .As<OpenCLContext>()
            .CopySharedTo(&ctx->As<OpenCLContext>());
        kernel->SetContext(std::move(ctx));
      } else {
        LOG(ERROR) << "opencl_valid:" << opencl_valid;
      }
242 243 244 245 246 247 248 249
    } else {
      kernel->SetContext(
          ContextScheduler::Global().NewContext(kernel->target()));
    }
#else
    kernel->SetContext(ContextScheduler::Global().NewContext(kernel->target()));
#endif
    instructions_[kRootBlockIdx].emplace_back(std::move(op), std::move(kernel));
250
  }
251
  Init();
252
}
253

Y
Yan Chunwei 已提交
254
void RuntimeProgram::Run() {
255 256 257 258 259 260
#ifdef LITE_WITH_PRECISION_PROFILE
  auto inst_precision_profiler = paddle::lite::profile::PrecisionProfiler();
  std::string precision_profiler_summary =
      inst_precision_profiler.GetSummaryHeader();
#endif

261 262 263 264 265 266 267 268 269
#ifdef LITE_WITH_NVTX
  const NVTXAnnotator& annotator = NVTXAnnotator::Global();
  NVTXRangeAnnotation annotation_one_loop = annotator.AnnotateBlock();
  if (annotator.IsEnabled()) {
    annotation_one_loop.generate(register_layer_names_.back(),
                                 lite::Color::Engine);
  }
#endif
  int idx = -1;
270 271
  auto& insts = instructions_[kRootBlockIdx];
  for (auto& inst : insts) {
272
    ++idx;
273
#ifndef LITE_WITH_FPGA
274
    if (inst.is_feed_fetch_op()) continue;
275
#endif
276 277 278 279 280 281 282
#ifdef LITE_WITH_NVTX
    NVTXRangeAnnotation annotation = annotator.AnnotateBlock();
    nvtxStringHandle_t registered_name = register_layer_names_[idx];
    if (annotator.IsEnabled()) {
      annotation.generate(registered_name, lite::Color::Runner);
    }
#endif
283 284 285 286
#ifdef LITE_WITH_CUDA
    if (inst.need_sync()) {
      inst.Sync();
    }
287
#endif
Y
Yan Chunwei 已提交
288
    inst.Run();
289
#ifdef LITE_WITH_PRECISION_PROFILE
290
#ifndef LITE_WITH_FPGA
291 292
    precision_profiler_summary +=
        inst_precision_profiler.GetInstPrecision(&inst);
293
#endif
294
#endif  // LITE_WITH_PRECISION_PROFILE
Y
Yan Chunwei 已提交
295
  }
296
#ifdef LITE_WITH_PROFILE
297
  LOG(INFO) << "\n" << profiler_.Summary(profile::Type::kDispatch, false, 1);
298
#endif
299 300
#ifdef LITE_WITH_PRECISION_PROFILE
  LOG(INFO) << "\n" << precision_profiler_summary;
301
#endif
Y
Yan Chunwei 已提交
302 303
}

304
void Program::Build(const std::shared_ptr<cpp::ProgramDesc>& program_desc) {
Y
Yan Chunwei 已提交
305 306 307
  CHECK(ops_.empty()) << "Executor duplicate Build found";

  // Create operators.
308 309 310 311 312 313 314 315 316 317 318 319
  auto block_size = program_desc->BlocksSize();
  CHECK(block_size);
  ops_.resize(block_size);
  for (size_t block_idx = 0; block_idx < block_size; ++block_idx) {
    auto* block_desc = program_desc->GetBlock<cpp::BlockDesc>(block_idx);
    auto op_size = block_desc->OpsSize();
    for (size_t op_idx = 0; op_idx < op_size; ++op_idx) {
      auto* op_desc = block_desc->GetOp<cpp::OpDesc>(op_idx);
      auto op_type = op_desc->Type();
      VLOG(4) << "create Op [" << op_type << "]";
      auto op = LiteOpRegistry::Global().Create(op_type);
      CHECK(op) << "no Op found for " << op_type;
J
juncaipeng 已提交
320
      if (op_type == "while") {
321 322
        static_cast<operators::WhileOp*>(op.get())->SetProgramDesc(
            program_desc);
J
juncaipeng 已提交
323
      } else if (op_type == "conditional_block") {
324 325
        static_cast<operators::ConditionalBlockOp*>(op.get())->SetProgramDesc(
            program_desc);
326
      } else if (op_type == "subgraph") {
327 328
        static_cast<operators::SubgraphOp*>(op.get())->SetProgramDesc(
            program_desc);
J
juncaipeng 已提交
329
      }
330 331
      op->Attach(*op_desc, exec_scope_);
      ops_[block_idx].emplace_back(std::move(op));
Y
Yan Chunwei 已提交
332 333 334 335
    }
  }
}

336 337 338
void Program::PrepareWorkspace(
    const std::shared_ptr<cpp::ProgramDesc>& program_desc,
    const std::vector<std::string>& vars_to_clone) {
Y
Yan Chunwei 已提交
339 340 341 342 343
  CHECK(!exec_scope_) << "Duplicate PrepareWorkspace found";
  exec_scope_ = &scope_->NewScope();
  // Create Feed and Fetch var.
  scope_->Var("feed")->GetMutable<std::vector<lite::Tensor>>();
  scope_->Var("fetch")->GetMutable<std::vector<lite::Tensor>>();
344 345
  vars_.push_back("feed");
  vars_.push_back("fetch");
Y
Yan Chunwei 已提交
346

347
  auto VarDescType2PrecisionType =
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
      [](const lite::VarDescAPI::Type& type) -> PrecisionType {
    switch (type) {
      case lite::VarDescAPI::Type::FP32:
        return PRECISION(kFloat);
      case lite::VarDescAPI::Type::FP16:
        return PRECISION(kFP16);
      case lite::VarDescAPI::Type::INT8:
        return PRECISION(kInt8);
      case lite::VarDescAPI::Type::INT16:
        return PRECISION(kInt16);
      case lite::VarDescAPI::Type::INT32:
        return PRECISION(kInt32);
      case lite::VarDescAPI::Type::INT64:
        return PRECISION(kInt64);
      default:
363 364
        LOG(WARNING) << "Unable to convert var desc type("
                     << static_cast<int>(type) << ") to precision type!";
365 366 367 368
        return PRECISION(kUnk);
    }
  };

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
  auto block_size = program_desc->BlocksSize();
  CHECK(block_size);
  for (size_t block_idx = 0; block_idx < block_size; ++block_idx) {
    auto* block_desc = program_desc->GetBlock<cpp::BlockDesc>(block_idx);
    auto var_size = block_desc->VarsSize();
    for (size_t var_idx = 0; var_idx < var_size; ++var_idx) {
      auto* var_desc = block_desc->GetVar<cpp::VarDesc>(var_idx);
      const auto& var_name = var_desc->Name();
      const auto& var_type = var_desc->GetType();
      if (!var_desc->Persistable()) {
        vars_.push_back(var_name);
        auto* var = exec_scope_->Var(var_name);
        VLOG(4) << "Var " << var_name << " in block " << block_idx;
        VLOG(4) << " - type " << static_cast<int>(var_type);
        if (var_type == lite::VarDescAPI::Type::LOD_TENSOR) {
          const auto& var_data_type =
              VarDescType2PrecisionType(var_desc->GetDataType());
          if (var_data_type != PRECISION(kUnk)) {
            var_type_map_[var_name] = LiteType::GetTensorTy(
                TARGET(kUnk), var_data_type, DATALAYOUT(kUnk));
          }
          VLOG(4) << " - data type " << static_cast<int>(var_data_type);
          // Create the tensor with the shape from var desc, it's convenient to
          // the graph analysis in the passes, but you should resize the tensor
          // with the real shape before accessing its data, because the
          // var_shape may be [-1,3,224,224]
          const auto& var_shape = var_desc->GetShape();
          auto* tensor = var->GetMutable<lite::Tensor>();
          if (tensor->dims().empty() && !var_shape.empty()) {
            tensor->Resize(var_shape);
            VLOG(4) << " - dims " << tensor->dims().repr();
          }
        } else if (var_type == lite::VarDescAPI::Type::LOD_TENSOR_ARRAY) {
          var_type_map_[var_name] = LiteType::GetTensorListTy(
              TARGET(kUnk), PRECISION(kUnk), DATALAYOUT(kUnk));
Y
Yan Chunwei 已提交
404 405
        }
      } else {
406 407 408
        if (var_name == "feed" || var_name == "fetch") continue;
        weights_.push_back(var_name);
        scope_->Var(var_name);
Y
Yan Chunwei 已提交
409 410 411
      }
    }
  }
412

413 414 415 416
  for (auto var_name : vars_to_clone) {
    exec_scope_->LocalVar(var_name);
    auto* tensor = scope_->Var(var_name)->GetMutable<Tensor>();
    auto* sub_tensor = exec_scope_->Var(var_name)->GetMutable<Tensor>();
417 418
    sub_tensor->CopyDataFrom(*tensor);
  }
Y
Yan Chunwei 已提交
419 420 421
}

void Instruction::Run() {
422 423 424 425 426 427 428
#ifdef LITE_WITH_PROFILE
  CHECK(profiler_) << "Profiler pointer of kernel can not be nullptr. "
                      "When LITE_WITH_PROFILE is defined, please set a "
                      "Profiler for Instruction.";
  profiler_->StartTiming(
      profile::Type::kCreate, profile_id_, kernel_->mutable_context());
#endif
Y
Yan Chunwei 已提交
429 430
  CHECK(op_) << "op null";
  CHECK(kernel_) << "kernel null";
431

Y
Yan Chunwei 已提交
432 433 434 435 436
  if (first_epoch_) {
    first_epoch_ = false;
    CHECK(op_->CheckShape());
  }

437 438 439
  if (op_->run_once() && has_run_) {
    return;
  }
440

441
  op_->InferShape();
Y
Yan Chunwei 已提交
442 443
  kernel_->Launch();
  has_run_ = true;
444 445 446

#ifdef LITE_WITH_PROFILE
  if (first_epoch_for_profiler_) {
447
    kernel_->SetIsKernelTest(false);
448 449 450 451
    SetProfileRuntimeOpInfo(profiler_->GetOpCharacter(profile_id_));
    first_epoch_for_profiler_ = false;
  }
#endif
Y
Yan Chunwei 已提交
452 453 454 455 456 457 458 459 460
}

STL::ostream& operator<<(STL::ostream& os, const Instruction& other) {
  os << other.kernel_->summary() << "\t(" << other.kernel_->doc() << ")";
  return os;
}

}  // namespace lite
}  // namespace paddle