conv_bn_kernel.cpp 2.7 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVBN_OP

#include "operators/kernel/conv_bn_kernel.h"
H
hjchen2 已提交
18
#include <cmath>
Z
zhangyang 已提交
19 20 21 22 23

namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
24
bool ConvBNKernel<FPGA, float>::Init(FusionConvBNParam<FPGA> *param) {
Z
zhangyang 已提交
25
  bool relu_enabled = false;
Z
zhangyang 已提交
26 27 28
  auto input = const_cast<Tensor *>(param->Input());
  auto filter = const_cast<Tensor *>(param->Filter());
  auto out = param->Output();
Z
zhangyang 已提交
29 30 31 32 33
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
Z
zhangyang 已提交
34 35 36
  PADDLE_MOBILE_ENFORCE(out->dims()[1] == param->InputBias()->dims()[0],
                        "Output channel should be equal to bias number");
  const int channel = out->dims()[1];
37
  auto bs_ptr =
38
      (float *)fpga::fpga_malloc(2 * channel * sizeof(float));  // // NOLINT
Z
zhangyang 已提交
39 40
  auto new_scale = new Tensor();
  auto new_bias = new Tensor();
Z
zhangyang 已提交
41 42 43 44 45 46
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
Z
zhangyang 已提交
47
    new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i];
Z
zhangyang 已提交
48 49
    bs_ptr[i + channel] = new_scale_ptr[i];
    bs_ptr[i] = new_bias_ptr[i];
Z
zhangyang 已提交
50 51 52
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);
Z
zhangyang 已提交
53

54
  fpga::format_conv_data(filter, out, &bs_ptr, param->Groups());
Z
zhangyang 已提交
55 56 57 58 59
  fpga::SplitConvArgs conv_arg = {0};
  fpga::fill_split_arg(&conv_arg, input, out, filter, relu_enabled,
                       param->Groups(), param->Strides()[0],
                       param->Strides()[1], param->Paddings()[0],
                       param->Paddings()[1], bs_ptr);
60
  param->SetFpgaArgs(conv_arg);
Z
zhangyang 已提交
61 62 63 64
  return true;
}

template <>
65
void ConvBNKernel<FPGA, float>::Compute(const FusionConvBNParam<FPGA> &param) {
Z
zhangyang 已提交
66 67 68 69 70 71 72
  fpga::ComputeFpgaConv(param.FpgaArgs());
}

}  // namespace operators
}  // namespace paddle_mobile

#endif