api.cpp 7.7 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15
#include "api.h"
H
hanbuhe 已提交
16 17 18 19 20 21
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <algorithm>
#include <cstring>
Z
zhangyang 已提交
22 23 24
#include "bias_scale.h"
#include "filter.h"
#include "image.h"
H
hanbuhe 已提交
25

Z
zhangyang 已提交
26 27
#define FPGA_TEST_MODE

Z
zhangyang 已提交
28
namespace paddle_mobile {
H
hanbuhe 已提交
29 30 31 32 33
namespace fpga {

static int fd = -1;
static const char *device_path = "/dev/fpgadrv0";

H
hanbuhe 已提交
34
static inline int do_ioctl(int req, const void *arg) {
H
hanbuhe 已提交
35
#ifdef PADDLE_MOBILE_OS_LINUX
H
hanbuhe 已提交
36
  return ioctl(req, (unsigned int64_t)arg);
H
hanbuhe 已提交
37 38 39
#else
  return -1;
#endif
Z
zhangyang 已提交
40
}
H
hanbuhe 已提交
41 42 43 44 45 46 47 48 49 50

int open_device() {
  if (fd == -1) {
    fd = open(device_path, O_RDWR);
  }
  return fd;
}

// memory management;
void *fpga_malloc(size_t size) {
H
hanbuhe 已提交
51
#ifdef PADDLE_MOBILE_OS_LINUX
Z
zhangyang 已提交
52 53
  return reinterpret_cast<void *>(
      mmap64(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0));
H
hanbuhe 已提交
54
#else
55
  return malloc(size);
H
hanbuhe 已提交
56
#endif
H
hanbuhe 已提交
57 58
}

59 60 61 62 63 64 65
void fpga_free(void *ptr) {
#ifdef PADDLE_MOBILE_OS_LINUX
  munmap(ptr, 0);
#else
  free(ptr);
#endif
}
H
hanbuhe 已提交
66 67 68 69 70

void fpga_copy(void *dest, const void *src, size_t num) {
  memcpy(dest, src, num);
}

H
hanbuhe 已提交
71
int ComputeFpgaConv(const struct ConvArgs &args) {
Z
zhangyang 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
#ifdef FPGA_TEST_MODE
  DLOG << "   relu_enabled:" << args.relu_enabled
       << "   sb_address:" << args.sb_address
       << "   filter_address:" << args.filter_address
       << "   filter_num:" << args.filter_num
       << "   group_num:" << args.group_num;
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
93 94
  return do_ioctl(IOCTL_CONFIG_CONV, &args);
}
Z
zhangyang 已提交
95

H
hanbuhe 已提交
96
int ComputeFpgaPool(const struct PoolingArgs &args) {
Z
zhangyang 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
#ifdef FPGA_TEST_MODE
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
113
  return do_ioctl(IOCTL_CONFIG_POOLING, &args);
H
hanbuhe 已提交
114
}
Z
zhangyang 已提交
115

H
hanbuhe 已提交
116
int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
Z
zhangyang 已提交
117 118 119 120 121 122 123 124 125 126 127
#ifdef FPGA_TEST_MODE
  DLOG << "   relu_enabled:" << args.relu_enabled << "   const0:" << args.const0
       << "   const1:" << args.const1;
  DLOG << "   image0_address:" << args.image0.address
       << "   image0_scale_address:" << args.image0.scale_address
       << "   image0_channels:" << args.image0.channels
       << "   image0_height:" << args.image0.height
       << "   image0_width:" << args.image0.width
       << "   pad0_height:" << args.image0.pad_height
       << "   pad0_width:" << args.image0.pad_width;
  DLOG << "   image1_address:" << args.image1.address
Z
zhangyang 已提交
128
       << "   image1_scale_address:" << args.image1.scale_address
Z
zhangyang 已提交
129 130 131 132 133 134 135 136 137
       << "   image1_channels:" << args.image1.channels
       << "   image1_height:" << args.image1.height
       << "   image1_width:" << args.image1.width
       << "   pad1_height:" << args.image1.pad_height
       << "   pad_width:" << args.image1.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
138 139 140
  return do_ioctl(IOCTL_CONFIG_EW, &args);
}
int PerformBypass(const struct BypassArgs &args) {
Z
zhangyang 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154
#ifdef FPGA_TEST_MODE
  DLOG << "   layout_type:" << args.layout_type
       << "   convert_type:" << args.convert_type;
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
155
  return do_ioctl(IOCTL_CONFIG_BYPASS, &args);
H
hanbuhe 已提交
156
}
Z
zhangyang 已提交
157

Z
zhangyang 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
  int channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = image_tensor->mutable_data<float>();
  size_t memory_size = channel * height * width * sizeof(float);
  float *new_data = (float *)fpga_malloc(memory_size);
  fpga_copy(new_data, data_ptr, memory_size);
  image::format_image(&new_data, channel, height, width);
  image_tensor->reset_data_ptr(new_data);
}

void format_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
  int channel = dims[1], height = dims[2], width = dims[3];
  size_t memory_size =
      height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  ofm_tensor->reset_data_ptr(fpga_malloc(memory_size));
}

void format_filter(framework::Tensor *filter_tensor, int group_num) {
  auto dims = filter_tensor->dims();
  int num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->mutable_data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  float *new_data = (float *)fpga_malloc(memory_size);
  fpga_copy(new_data, data_ptr, memory_size);
  float max_value = filter::find_max(new_data, num * channel * height * width);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
}

void format_fc_matrix(framework::Tensor *filter_tensor, int group_num,
                      int height, int width) {
  auto dims = filter_tensor->dims();
  PADDLE_MOBILE_ENFORCE(dims[0] % (height * width) == 0,
                        "Filter number should be divisible by group number");
  int num = dims[1], channel = dims[0] / height / width;
  auto data_ptr = filter_tensor->mutable_data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  float *new_data = (float *)fpga_malloc(memory_size);
  fpga_copy(new_data, data_ptr, memory_size);
  float max_value = filter::find_max(new_data, num * channel * height * width);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
}

void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}

H
hanbuhe 已提交
212
}  // namespace fpga
Z
zhangyang 已提交
213
}  // namespace paddle_mobile