fc_compute_test.cc 2.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14

Y
Yan Chunwei 已提交
15 16
#include "lite/kernels/x86/fc_compute.h"
#include <gtest/gtest.h>
17 18
#include <memory>
#include <utility>
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include <vector>
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

TEST(fc_x86, retrive_op) {
  auto fc =
      KernelRegistry::Global().Create<TARGET(kX86), PRECISION(kFloat)>("fc");
  ASSERT_FALSE(fc.empty());
  ASSERT_TRUE(fc.front());
}

TEST(fc_x86, init) {
  FcCompute<float> fc;
  ASSERT_EQ(fc.precision(), PRECISION(kFloat));
  ASSERT_EQ(fc.target(), TARGET(kX86));
}

TEST(fc_x86, run_test) {
  lite::Tensor x, w, b, out;
  constexpr int batch_size = 2;
  std::vector<int64_t> x_shape{batch_size, 3};
  x.Resize(lite::DDim(x_shape));
  std::vector<int64_t> w_shape{3, 4};
  w.Resize(lite::DDim(w_shape));
  std::vector<int64_t> b_shape{1, 4};
  b.Resize(lite::DDim(b_shape));
49
  std::vector<int64_t> out_shape{batch_size, 4};
Y
Yan Chunwei 已提交
50 51 52 53 54 55 56 57 58 59 60
  out.Resize(lite::DDim(out_shape));

  auto x_data = x.mutable_data<float>();
  auto w_data = w.mutable_data<float>();
  auto b_data = b.mutable_data<float>();
  auto out_data = out.mutable_data<float>();

  for (int64_t i = 0; i < x.dims().production(); i++) {
    x_data[i] = static_cast<float>(i);
  }
  for (int64_t i = 0; i < w.dims().production(); i++) {
61
    w_data[i] = static_cast<float>(2);
Y
Yan Chunwei 已提交
62 63
  }
  for (int64_t i = 0; i < b.dims().production(); i++) {
64
    b_data[i] = static_cast<float>(2);
Y
Yan Chunwei 已提交
65 66 67 68 69 70 71 72 73 74 75 76
  }

  // FcCompute fc;
  FcCompute<float> fc;
  operators::FcParam param;

  param.in_num_col_dims = 1;
  param.input = &x;
  param.w = &w;
  param.bias = &b;
  param.output = &out;
  param.in_mat_dims = x.dims();
77
  param.activation_type = "relu";
Y
Yan Chunwei 已提交
78

79 80
  std::unique_ptr<KernelContext> ctx(new KernelContext);
  ctx->As<X86Context>();
Y
Yan Chunwei 已提交
81
  fc.SetParam(param);
82
  fc.SetContext(std::move(ctx));
Y
Yan Chunwei 已提交
83
  fc.Run();
84
  std::vector<float> ref_data({8, 8, 8, 8, 26, 26, 26, 26});
Y
Yan Chunwei 已提交
85
  for (int i = 0; i < out.dims().production(); i++) {
86
    EXPECT_NEAR(out_data[i], ref_data[i], 1e-5);
Y
Yan Chunwei 已提交
87 88 89 90 91 92 93 94 95
  }
}

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(fc, kX86, kFloat, kNCHW, def);