conv_add_kernel.cpp 5.2 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADD_OP

#include "operators/kernel/conv_add_kernel.h"
Z
zhaojiaying01 已提交
18
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
L
liuruilong 已提交
19 20 21 22 23 24

namespace paddle_mobile {
namespace operators {

template <>
bool ConvAddKernel<GPU_CL, float>::Init(FusionConvAddParam<GPU_CL> *param) {
L
liuruilong 已提交
25
  PADDLE_MOBILE_ENFORCE(
L
liuruilong 已提交
26
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
L
liuruilong 已提交
27
          param->Paddings()[0] == param->Paddings()[1],
L
liuruilong 已提交
28
      "need equal");
29 30 31 32
  if (!param->Bias()->isInit()) {
    param->Bias()->InitCLImage(cl_helper_.CLContext(),
                               this->cl_helper_.CLCommandQueue());
  }
L
liuruilong 已提交
33

L
liuruilong 已提交
34 35 36 37
  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);
  param->SetOffset(offset);

38 39
  const std::string conv_kernel_file = "conv_kernel.cl";
  const std::string wino_kernel_file = "winograd_transform.cl";
40 41 42 43 44 45
  std::string build_options;
  if (param->Output()->dims() == param->Bias()->dims()) {
    build_options = "-DBIASE_ELE";
  } else {
    build_options = "-DBIASE_CH";
  }
46

L
liuruilong 已提交
47
  if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
48
    param->ExecMode() = ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW1x1_FLOAT;
L
liuruilong 已提交
49 50
    param->Filter()->InitNImage(cl_helper_.CLContext(),
                                cl_helper_.CLCommandQueue());
51 52 53

    this->cl_helper_.AddKernel("conv_1x1_spl", conv_kernel_file, build_options);

Y
yangfei 已提交
54 55 56
  } else if (param->Filter()->dims()[1] == 1 &&
             param->Input()->dims()[1] == param->Output()->dims()[1] &&
             param->Filter()->dims()[2] == 3) {
57
    param->ExecMode() = ConvParam<GPU_CL>::EXEC_DEPTHWISE3x3_FLOAT;
Y
yangfei 已提交
58
    param->Filter()->InitDWImage(cl_helper_.CLContext(),
L
liuruilong 已提交
59
                                 cl_helper_.CLCommandQueue());
60 61 62

    this->cl_helper_.AddKernel("depth_conv_3x3", conv_kernel_file,
                               build_options);
L
liuruilong 已提交
63 64 65

  } else if (param->Filter()->dims()[2] == 3 &&
             param->Filter()->dims()[3] == 3) {
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    //    if (param->Strides()[0] == param->Strides()[1] &&
    //        param->Strides()[0] == 1 && param->Input()->dims()[2] >= 32) {
    //      param->ExecMode() = ConvParam<GPU_CL>::EXEC_WINOGRAD3X3_FLOAT;
    //      this->cl_helper_.AddKernel("winograd_filter_transform_2x2",
    //                                 wino_kernel_file, build_options);
    //      this->cl_helper_.AddKernel("winograd_input_transform_2x2",
    //                                 wino_kernel_file, build_options);
    //      this->cl_helper_.AddKernel("matmul", "matmul.cl");
    //      this->cl_helper_.AddKernel("winograd_output_transform_2x2",
    //                                 wino_kernel_file, build_options);
    //
    //      winograd_transform_weight<4, 3>(&this->cl_helper_, param->Filter());
    //
    //    } else {
    param->ExecMode() = ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW3x3_FLOAT;
Z
zhaojiaying01 已提交
81
    param->Filter()->InitCLImage(cl_helper_.CLContext(),
L
liuruilong 已提交
82 83
                                 cl_helper_.CLCommandQueue());

84 85
    this->cl_helper_.AddKernel("conv_3x3", conv_kernel_file, build_options);
    //    }
L
liuruilong 已提交
86

Y
yangfei 已提交
87 88
  } else if (param->Filter()->dims()[2] == 7 &&
             param->Filter()->dims()[3] == 7) {
89
    param->ExecMode() = ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW7x7_FLOAT;
Y
yangfei 已提交
90 91
    param->Filter()->InitCLImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());
92 93 94

    this->cl_helper_.AddKernel("conv_7x7", conv_kernel_file, build_options);

Y
yangfei 已提交
95 96
  } else if (param->Filter()->dims()[2] == 5 &&
             param->Filter()->dims()[3] == 5) {
97
    param->ExecMode() = ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW5x5_FLOAT;
Y
yangfei 已提交
98 99
    param->Filter()->InitCLImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());
100 101

    this->cl_helper_.AddKernel("conv_5x5", conv_kernel_file, build_options);
L
liuruilong 已提交
102 103
  }

L
liuruilong 已提交
104 105 106 107 108
  return true;
}

template <>
void ConvAddKernel<GPU_CL, float>::Compute(
L
liuruilong 已提交
109
    const FusionConvAddParam<GPU_CL> &param) {
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  switch (param.ExecMode()) {
    case ConvParam<GPU_CL>::EXEC_WINOGRAD3X3_FLOAT:
      WinogradConv3x3<4, 3>(&this->cl_helper_, param, false, param.Bias());
      break;
    case ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW1x1_FLOAT:
    case ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW3x3_FLOAT:
    case ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW5x5_FLOAT:
    case ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW7x7_FLOAT:
    case ConvParam<GPU_CL>::EXEC_DEPTHWISE3x3_FLOAT:
      ConvAddBnRelu(&this->cl_helper_, param, false, param.Bias());
      break;
    default:
      PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
                                    param.ExecMode());
  }
L
liuruilong 已提交
125
}
L
liuruilong 已提交
126 127 128 129 130 131 132

template class ConvAddKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif