reduce_op_function.h 2.8 KB
Newer Older
L
lijianshe02 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/fluid/eigen.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

template <typename T,
          size_t D,
          int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = lite::fluid::EigenTensor<T, D, MajorType, IndexType>;
template <typename T,
          int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenScalar = lite::fluid::EigenScalar<T, MajorType, IndexType>;
template <typename T,
          int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = lite::fluid::EigenVector<T, MajorType, IndexType>;

template <lite::TargetType Target,
          typename T,
          size_t D,
          size_t R_D,
          typename Functor>
// const lite::Context<Target>& context,
void ReduceFunctor(const lite::Tensor& input,
                   lite::Tensor* output,
                   const std::vector<int>& dims,
                   bool keep_dim) {
  auto x = EigenTensor<T, D>::From(input);
  auto x_rank = static_cast<int>(x.dimensions().size());
  auto reduce_dim = Eigen::array<int, R_D>();
  std::vector<int> dims_ref = dims;
  for (size_t i = 0; i < dims_ref.size(); ++i) {
    if (dims_ref[i] < 0) dims_ref[i] = x_rank + dims_ref[i];
    reduce_dim[i] = dims_ref[i];
  }
  // construct the squeezed output tensor
  lite::DDim out_dims = output->dims();
  if (keep_dim && x_rank > 1) {
    const int kDelFlag = -2;
    auto dims_vector = out_dims.Vectorize();
    for (size_t i = 0; i < dims_ref.size(); ++i) {
      dims_vector[dims_ref[i]] = kDelFlag;
    }
    dims_vector.erase(remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
                      dims_vector.end());
    out_dims = lite::DDim(dims_vector);
  }
  // auto& place = *context.eigen_device();
  Functor functor;

  if (D == 1) {
    auto out = EigenScalar<T>::From(*output);
    functor(&x, &out, reduce_dim);
  } else {
    auto out = EigenTensor<T, (D - R_D)>::From(*output, out_dims);
    functor(&x, &out, reduce_dim);
  }
}

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle