executor_for_test.h 5.3 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
E
eclipsess 已提交
18
#include <vector>
L
liuruilong 已提交
19

L
liuruilong 已提交
20
#include "common/log.h"
Z
zhaojiaying01 已提交
21
#include "framework/op_registry.h"
W
wangliu 已提交
22
#include "io/io.h"
L
liuruilong 已提交
23
#include "operators/conv_op.h"
E
eclipsess 已提交
24
#include "operators/elementwise_add_op.h"
L
liuruilong 已提交
25
#include "operators/pool_op.h"
E
eclipsess 已提交
26
#include "operators/relu_op.h"
E
eclipsess 已提交
27
#include "operators/reshape_op.h"
W
wangliu 已提交
28
#include "operators/sigmoid_op.h"
L
liuruilong 已提交
29
#include "operators/softmax_op.h"
E
eclipsess 已提交
30
#include "operators/transpose_op.h"
L
liuruilong 已提交
31

L
liuruilong 已提交
32
using paddle_mobile::Executor;
L
liuruilong 已提交
33 34 35 36 37 38 39 40
using paddle_mobile::framework::BlockDesc;
using paddle_mobile::framework::DDim;
using paddle_mobile::framework::LoDTensor;
using paddle_mobile::framework::OpDesc;
using paddle_mobile::framework::Program;
using paddle_mobile::framework::Tensor;
using paddle_mobile::framework::Variable;
using std::string;
E
eclipsess 已提交
41
using std::vector;
L
liuruilong 已提交
42 43 44
template <typename DeviceType, typename OpType>
class Executor4Test : public Executor<DeviceType> {
 public:
L
liuruilong 已提交
45
  Executor4Test(Program<DeviceType> p, string op_type, bool use_optimize = false)
L
liuruilong 已提交
46
      : Executor<DeviceType>() {
L
liuruilong 已提交
47
    this->use_optimize_ = use_optimize;
L
liuruilong 已提交
48 49 50 51 52 53 54
    this->program_ = p;
    if (this->use_optimize_) {
      this->to_predict_program_ = this->program_.optimizeProgram;
    } else {
      this->to_predict_program_ = this->program_.originProgram;
    }

L
liuruilong 已提交
55 56 57 58 59 60 61 62 63 64
    if (this->program_.originProgram == nullptr) {
      LOG(paddle_mobile::LogLevel::kLOG_ERROR)
          << "to_predict_program_ == nullptr";
    }
    const std::vector<std::shared_ptr<BlockDesc>> blocks =
        this->to_predict_program_->Blocks();
    for (std::shared_ptr<BlockDesc> block_desc : blocks) {
      std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
      for (std::shared_ptr<OpDesc> op : ops) {
        if (op->Type() == op_type) {
L
liuruilong 已提交
65 66 67

          DLOG << "匹配到: " << op->Type();

E
eclipsess 已提交
68
          /// test first meeting op in program
Z
zhaojiaying01 已提交
69 70
          std::shared_ptr<paddle_mobile::framework::OperatorBase<DeviceType>>
              op_ptr = paddle_mobile::framework::OpRegistry<
L
liuruilong 已提交
71
                  DeviceType>::CreateOp(op->Type(), op->GetInputs(),
Z
zhaojiaying01 已提交
72 73 74
                                                op->GetOutputs(),
                                                op->GetAttrMap(),
                                                this->program_.scope);
L
liuruilong 已提交
75 76 77 78 79
          this->ops_of_block_[*block_desc.get()].push_back(op_ptr);
          break;
        }
      }
    }
80
    this->InitMemory();
L
liuruilong 已提交
81 82
  }

E
eclipsess 已提交
83
  template <typename T = LoDTensor>
L
liuruilong 已提交
84
  vector<std::shared_ptr<Tensor>> Predict(const vector<Tensor> &ts,
E
eclipsess 已提交
85 86 87
                                          const vector<string> &input_names,
                                          const vector<string> &output_names,
                                          const vector<DDim> &ddims) {
L
liuruilong 已提交
88
    auto scope = this->program_.scope;
E
eclipsess 已提交
89 90
    size_t input_size = input_names.size();
    size_t out_size = output_names.size();
L
liuruilong 已提交
91

E
eclipsess 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    vector<Variable *> input_vars(input_size);
    vector<LoDTensor *> input_tensors(input_size);
    for (int i = 0; i < input_size; i++) {
      input_vars[i] = scope->Var(input_names[i]);
      input_tensors[i] = input_vars[i]->GetMutable<T>();
      input_tensors[i]->ShareDataWith(ts[i]);
    }

    vector<Variable *> output_vars(out_size);
    vector<LoDTensor *> output_tensors(out_size);
    vector<std::shared_ptr<Tensor>> output_tensor_sptrs(out_size);

    for (int i = 0; i < out_size; i++) {
      output_vars[i] = scope->Var(output_names[i]);
      output_tensors[i] = output_vars[i]->GetMutable<T>();
      output_tensors[i]->mutable_data<float>(ddims[i]);
      output_tensor_sptrs[i] = std::make_shared<LoDTensor>();
      output_tensor_sptrs[i].reset(output_tensors[i]);
    }
L
liuruilong 已提交
111

L
liuruilong 已提交
112 113 114 115 116 117 118 119
    std::shared_ptr<paddle_mobile::framework::BlockDesc> to_predict_block =
        this->to_predict_program_->Block(0);
    for (int j = 0; j < this->ops_of_block_[*to_predict_block.get()].size();
         ++j) {
      auto op = this->ops_of_block_[*to_predict_block.get()][j];
      op->Run();
    }

E
eclipsess 已提交
120
    return output_tensor_sptrs;
L
liuruilong 已提交
121
  }
122

L
liuruilong 已提交
123
  std::shared_ptr<Tensor> Predict(const Tensor &t, string input, string output,
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
                                  const DDim &dDim) {
    auto scope = this->program_.scope;
    Variable *g_feed_value = scope->Var(input);
    auto tensor = g_feed_value->GetMutable<LoDTensor>();
    tensor->ShareDataWith(t);

    Variable *con_output = scope->Var(output);
    auto *output_tensor = con_output->GetMutable<LoDTensor>();
    output_tensor->mutable_data<float>(dDim);

    std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
    out_tensor.reset(output_tensor);

    std::shared_ptr<paddle_mobile::framework::BlockDesc> to_predict_block =
        this->to_predict_program_->Block(0);
    for (int j = 0; j < this->ops_of_block_[*to_predict_block.get()].size();
         ++j) {
      auto op = this->ops_of_block_[*to_predict_block.get()][j];
      op->Run();
    }

    return out_tensor;
  }
L
liuruilong 已提交
147
};