mul_compute.h 3.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include "lite/backends/cuda/blas.h"
17
#include "lite/core/context.h"
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include "lite/core/kernel.h"
#include "lite/core/types.h"
#include "lite/operators/op_params.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {

template <typename T>
void mul_compute(const lite::cuda::Blas<float>& blas,
                 const T* x,
                 int x_h,
                 int x_w,
                 const T* y,
                 int y_h,
                 int y_w,
                 T* out) {
36 37 38
  float alpha = 1.0;
  float beta = 0.0;
  /*
Y
Yan Chunwei 已提交
39 40 41 42 43
  blas.sgemm(CUBLAS_OP_N,
             CUBLAS_OP_N,
             x_h,
             y_w,
             x_w,
44
             &alpha,
Y
Yan Chunwei 已提交
45 46 47 48
             x,
             x_w,
             y,
             y_w,
49
             &beta,
Y
Yan Chunwei 已提交
50 51
             out,
             x_h);
52 53 54 55 56 57 58 59 60 61 62 63 64 65
  */
  blas.sgemm(CUBLAS_OP_N,
             CUBLAS_OP_N,
             y_w,
             x_h,
             y_h,
             &alpha,
             y,
             y_w,
             x,
             x_w,
             &beta,
             out,
             y_w);
Y
Yan Chunwei 已提交
66 67 68 69 70 71 72 73
}

class MulCompute : public KernelLite<TARGET(kCUDA), PRECISION(kFloat)> {
 public:
  using param_t = operators::MulParam;

  void Run() override {
    CHECK(ctx_) << "running context should be set first";
74
    auto& context = this->ctx_->template As<CUDAContext>();
Y
Yan Chunwei 已提交
75 76 77
    CHECK(context.cublas_fp32()) << "blas should init first";
    auto& blas = *context.cublas_fp32();

78 79 80 81
    auto& param = this->Param<param_t>();
    const auto* x_data = param.x->data<float>();
    const auto* y_data = param.y->data<float>();
    auto* out_data = param.output->mutable_data<float>(TARGET(kCUDA));
Y
Yan Chunwei 已提交
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96
    int x_h = static_cast<int>(
        param.x->dims().Slice(0, param.x_num_col_dims).production());
    int x_w = static_cast<int>(
        param.x->dims()
            .Slice(param.x_num_col_dims, param.x->dims().size())
            .production());
    int y_h = static_cast<int>(
        param.y->dims().Slice(0, param.y_num_col_dims).production());
    int y_w = static_cast<int>(
        param.y->dims()
            .Slice(param.y_num_col_dims, param.y->dims().size())
            .production());
    CHECK_EQ(x_w, y_h) << "x_w must be equal with y_h";
    LOG(INFO) << x_h << " " << x_w << " " << y_h << " " << y_w;
Y
Yan Chunwei 已提交
97

98
    mul_compute<float>(blas, x_data, x_h, x_w, y_data, y_h, y_w, out_data);
Y
Yan Chunwei 已提交
99 100 101 102 103 104 105 106 107
  }

  virtual ~MulCompute() = default;
};

}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle