matmul_op.cc 2.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/xpu/bridges/graph.h"
#include "lite/kernels/xpu/bridges/utility.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace xpu {

int MatmulConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[XPU] Converting " + op_type + "...";

  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x_type = kernel->GetInputDeclType("X");
  CHECK(x_type->precision() == PRECISION(kFloat));
  CHECK(x_type->layout() == DATALAYOUT(kNCHW));
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();

  auto y_name = op_info->Input("Y").front();
  auto y_type = kernel->GetInputDeclType("Y");
  CHECK(y_type->precision() == PRECISION(kFloat));
  CHECK(y_type->layout() == DATALAYOUT(kNCHW));
  auto y = scope->FindMutableTensor(y_name);
  auto y_dims = y->dims();

  auto out_name = op_info->Output("Out").front();
  auto out_type = kernel->GetOutputDeclType("Out");
  CHECK(out_type->precision() == PRECISION(kFloat));
  CHECK(out_type->layout() == DATALAYOUT(kNCHW));

  auto transpose_x = op_info->GetAttr<bool>("transpose_X");
  CHECK(!transpose_x) << "XPU only support transpose_x == true now";
  auto transpose_y = op_info->GetAttr<bool>("transpose_Y");
  auto alpha = op_info->GetAttr<float>("alpha");

  // X node
  std::shared_ptr<xtcl::xExpr> x_node = nullptr;
  if (graph->HasNode(x_name)) {
    x_node = graph->GetNode(x_name);
  } else {
    x_node = graph->AddNode(x_name, x_dims);
  }

  // Y node
  std::shared_ptr<xtcl::xExpr> y_node = nullptr;
  if (graph->HasNode(y_name)) {
    y_node = graph->GetNode(y_name);
  } else {
    y_node = graph->AddNode(y_name, y_dims);
  }

  auto matmul_node =
      graph->builder_.CreateMatmul2D(*x_node, *y_node, transpose_y);
  graph->AddNode(out_name, graph->builder_.CreateScale(matmul_node, alpha));

  return SUCCESS;
}

}  // namespace xpu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(XPU,
                         matmul,
                         paddle::lite::subgraph::xpu::MatmulConverter);